ترغب بنشر مسار تعليمي؟ اضغط هنا

Flexible circuits in the $d$-dimensional rigidity matroid

109   0   0.0 ( 0 )
 نشر من قبل Anthony Nixon
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A bar-joint framework $(G,p)$ in $mathbb{R}^d$ is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of $mathbb{R}^d$. It is known that, when $(G,p)$ is generic, its rigidity depends only on the underlying graph $G$, and is determined by the rank of the edge set of $G$ in the generic $d$-dimensional rigidity matroid $mathcal{R}_d$. Complete combinatorial descriptions of the rank function of this matroid are known when $d=1,2$, and imply that all circuits in $mathcal{R}_d$ are generically rigid in $mathbb{R}^d$ when $d=1,2$. Determining the rank function of $mathcal{R}_d$ is a long standing open problem when $dgeq 3$, and the existence of non-rigid circuits in $mathcal{R}_d$ for $dgeq 3$ is a major contributing factor to why this problem is so difficult. We begin a study of non-rigid circuits by characterising the non-rigid circuits in $mathcal{R}_d$ which have at most $d+6$ vertices.



قيم البحث

اقرأ أيضاً

Motivated by a rigidity-theoretic perspective on the Localization Problem in 2D, we develop an algorithm for computing circuit polynomials in the algebraic rigidity matroid associated to the Cayley-Menger ideal for $n$ points in 2D. We introduce comb inatorial resultants, a new operation on graphs that captures properties of the Sylvester resultant of two polynomials in the algebraic rigidity matroid. We show that every rigidity circuit has a construction tree from $K_4$ graphs based on this operation. Our algorithm performs an algebraic elimination guided by the construction tree, and uses classical resultants, factorization and ideal membership. To demonstrate its effectiveness, we implemented our algorithm in Mathematica: it took less than 15 seconds on an example where a Groebner Basis calculation took 5 days and 6 hrs.
A linearly constrained framework in $mathbb{R}^d$ is a point configuration together with a system of constraints which fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It is globally rigid if the configuration is uniquely defined by the constraint system, and is rigid if it is uniquely defined within some small open neighbourhood. Streinu and Theran characterised generic rigidity of linearly constrained frameworks in $mathbb{R}^2$ in 2010. We obtain an analagous characterisation for generic global rigidity in $mathbb{R}^2$. More precisely we show that a generic linearly constrained framework in $mathbb{R}^2$ is globally rigid if and only if it is redundantly rigid and `balanced. For generic frameworks which are not balanced, we determine the precise number of solutions to the constraint system whenever the underlying rigidity matroid of the given framework is connected. We also obtain a stress matrix sufficient condition and a Hendrickson type necessary condition for a generic linearly constrained framework to be globally rigid in $mathbb{R}^d$.
We show that a generic framework $(G,p)$ on the cylinder is globally rigid if and only if $G$ is a complete graph on at most four vertices or $G$ is both redundantly rigid and $2$-connected. To prove the theorem we also derive a new recursive constru ction of circuits in the simple $(2,2)$-sparse matroid, and a characterisation of rigidity for generic frameworks on the cylinder when a single designated vertex is allowed to move off the cylinder.
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Ther an in 2010. We will extend their characterisation to the case when $dgeq 3$ and each vertex is constrained to lie in an affine subspace of dimension $t$, when $t=1,2$ and also when $tgeq 3$ and $dgeq t(t-1)$. We then point out that results on body-bar frameworks obtained by N. Katoh and S. Tanigawa in 2013 can be used to characterise when a graph has a rigid realisation as a $d$-dimensional body-bar framework with a given set of linear constraints.
A simple graph is $3$-rigid if its generic bar-joint frameworks in $R^3$ are infinitesimally rigid. Necessary and sufficient conditions are obtained for the minimal $3$-rigidity of a simple graph which is obtained from the $1$-skeleton of a triangula ted torus by the deletion of edges interior to a triangulated disc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا