A simple graph is $3$-rigid if its generic bar-joint frameworks in $R^3$ are infinitesimally rigid. Necessary and sufficient conditions are obtained for the minimal $3$-rigidity of a simple graph which is obtained from the $1$-skeleton of a triangulated torus by the deletion of edges interior to a triangulated disc.
A simple graph G=(V,E) is 3-rigid if its generic bar-joint frameworks in R3 are infinitesimally rigid. Block and hole graphs are derived from triangulated spheres by the removal of edges and the addition of minimally rigid subgraphs, known as blocks,
in some of the resulting holes. Combinatorial characterisations of minimal $3$-rigidity are obtained for these graphs in the case of a single block and finitely many holes or a single hole and finitely many blocks. These results confirm a conjecture of Whiteley from 1988 and special cases of a stronger conjecture of Finbow-Singh and Whiteley from 2013.
We show that a generic framework $(G,p)$ on the cylinder is globally rigid if and only if $G$ is a complete graph on at most four vertices or $G$ is both redundantly rigid and $2$-connected. To prove the theorem we also derive a new recursive constru
ction of circuits in the simple $(2,2)$-sparse matroid, and a characterisation of rigidity for generic frameworks on the cylinder when a single designated vertex is allowed to move off the cylinder.
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Ther
an in 2010. We will extend their characterisation to the case when $dgeq 3$ and each vertex is constrained to lie in an affine subspace of dimension $t$, when $t=1,2$ and also when $tgeq 3$ and $dgeq t(t-1)$. We then point out that results on body-bar frameworks obtained by N. Katoh and S. Tanigawa in 2013 can be used to characterise when a graph has a rigid realisation as a $d$-dimensional body-bar framework with a given set of linear constraints.
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Ther
an in 2010 and the case when each vertex is constrained to lie in an affine subspace of dimension $t$, and $dgeq t(t-1)$ was solved by Cruickshank, Guler and the first two authors in 2019. We extend the latter result by showing that the given characterisation holds whenever $dgeq 2t$.
A bar-joint framework $(G,p)$ in $mathbb{R}^d$ is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of $mathbb{R}^d$. It is known that, when $(G,p)$ is generic, its rigidity depends only on the underlyi
ng graph $G$, and is determined by the rank of the edge set of $G$ in the generic $d$-dimensional rigidity matroid $mathcal{R}_d$. Complete combinatorial descriptions of the rank function of this matroid are known when $d=1,2$, and imply that all circuits in $mathcal{R}_d$ are generically rigid in $mathbb{R}^d$ when $d=1,2$. Determining the rank function of $mathcal{R}_d$ is a long standing open problem when $dgeq 3$, and the existence of non-rigid circuits in $mathcal{R}_d$ for $dgeq 3$ is a major contributing factor to why this problem is so difficult. We begin a study of non-rigid circuits by characterising the non-rigid circuits in $mathcal{R}_d$ which have at most $d+6$ vertices.