ﻻ يوجد ملخص باللغة العربية
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Theran in 2010. We will extend their characterisation to the case when $dgeq 3$ and each vertex is constrained to lie in an affine subspace of dimension $t$, when $t=1,2$ and also when $tgeq 3$ and $dgeq t(t-1)$. We then point out that results on body-bar frameworks obtained by N. Katoh and S. Tanigawa in 2013 can be used to characterise when a graph has a rigid realisation as a $d$-dimensional body-bar framework with a given set of linear constraints.
A linearly constrained framework in $mathbb{R}^d$ is a point configuration together with a system of constraints which fixes the distances between some pairs of points and additionally restricts some of the points to lie in given affine subspaces. It
We consider the problem of characterising the generic rigidity of bar-joint frameworks in $mathbb{R}^d$ in which each vertex is constrained to lie in a given affine subspace. The special case when $d=2$ was previously solved by I. Streinu and L. Ther
We show that a generic framework $(G,p)$ on the cylinder is globally rigid if and only if $G$ is a complete graph on at most four vertices or $G$ is both redundantly rigid and $2$-connected. To prove the theorem we also derive a new recursive constru
A one-to-one correspondence between the infinitesimal motions of bar-joint frameworks in $mathbb{R}^d$ and those in $mathbb{S}^d$ is a classical observation by Pogorelov, and further connections among different rigidity models in various different sp
Fekete, Jordan and Kaszanitzky [4] characterised the graphs which can be realised as 2-dimensional, infinitesimally rigid, bar-joint frameworks in which two given vertices are coincident. We formulate a conjecture which would extend their characteris