ﻻ يوجد ملخص باللغة العربية
In 1903, noted puzzle-maker Henry Dudeney published The Spider and the Fly puzzle, which asks for the shortest path along the surfaces of a square prism between two points (source and target) located on the square faces, and surprisingly showed that the shortest path traverses five faces. Dudeneys source and target points had very symmetrical locations; in this article, we allow the source and target points to be anywhere in the interior of opposite faces, but now require the square prism to be a cube. In this context, we find that, depending on source and target locations, a shortest path can traverse either three or four faces, and we investigate the conditions that lead to four-face solutions and estimate the probability of getting a four-face shortest path. We utilize a combination of numerical calculations, elementary geometry, and transformations we call corner moves of cube unfolding diagrams,
Traveling to different destinations is a big part of our lives. We visit a variety of locations both during our daily lives and when were on vacation. How can we find the best way to navigate from one place to another? Perhaps we can test all of the
A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process g
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foragi
We present a framework to simulate SIR processes on networks using weighted shortest paths. Our framework maps the SIR dynamics to weights assigned to the edges of the network, which can be done for Markovian and non-Markovian processes alike. The we
The determination of collision-free shortest paths among growing discs has previously been studied for discs with fixed growing rates. Here, we study a more general case of this problem, where: (1) the speeds at which the discs are growing are polyno