ﻻ يوجد ملخص باللغة العربية
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foraging two food sources s0 and s1. We prove that, under this model, the mass of the mold will eventually converge to the shortest s0 - s1 path of the network that the mold lies on, independently of the structure of the network or of the initial mass distribution. This matches the experimental observations by the biologists and can be seen as an example of a natural algorithm, that is, an algorithm developed by evolution over millions of years.
The determination of collision-free shortest paths among growing discs has previously been studied for discs with fixed growing rates. Here, we study a more general case of this problem, where: (1) the speeds at which the discs are growing are polyno
We consider the parameterized complexity of the problem of tracking shortest s-t paths in graphs, motivated by applications in security and wireless networks. Given an undirected and unweighted graph with a source s and a destination t, Tracking Shor
In this paper, we study the single-source shortest-path (SSSP) problem with positive edge weights, which is a notoriously hard problem in the parallel context. In practice, the $Delta$-stepping algorithm proposed by Meyer and Sanders has been widely
The efficient computation of shortest paths in complex networks is essential to face new challenges related to critical infrastructures such as a near real-time monitoring and control and the management of big size systems. In particular, using infor
In the decremental $(1+epsilon)$-approximate Single-Source Shortest Path (SSSP) problem, we are given a graph $G=(V,E)$ with $n = |V|, m = |E|$, undergoing edge deletions, and a distinguished source $s in V$, and we are asked to process edge deletion