ﻻ يوجد ملخص باللغة العربية
Traveling to different destinations is a big part of our lives. We visit a variety of locations both during our daily lives and when were on vacation. How can we find the best way to navigate from one place to another? Perhaps we can test all of the different ways of traveling between two places, but another method is to use mathematics and computation to find a shortest path. We discuss how to construct a shortest path and introduce Dijkstras algorithm to minimize the total cost of a path, where the cost may be the travel distance, travel time, or some other measurement. We also discuss how to use shortest paths in the real world to save time and increase traveling efficiency.
In 1903, noted puzzle-maker Henry Dudeney published The Spider and the Fly puzzle, which asks for the shortest path along the surfaces of a square prism between two points (source and target) located on the square faces, and surprisingly showed that
A localized method to distribute paths on random graphs is devised, aimed at finding the shortest paths between given source/destination pairs while avoiding path overlaps at nodes. We propose a method based on message-passing techniques to process g
We present a framework to simulate SIR processes on networks using weighted shortest paths. Our framework maps the SIR dynamics to weights assigned to the edges of the network, which can be done for Markovian and non-Markovian processes alike. The we
Physarum Polycephalum is a slime mold that is apparently able to solve shortest path problems. A mathematical model has been proposed by biologists to describe the feedback mechanism used by the slime mold to adapt its tubular channels while foragi
Understanding how and how far information, behaviors, or pathogens spread in social networks is an important problem, having implications for both predicting the size of epidemics, as well as for planning effective interventions. There are, however,