ﻻ يوجد ملخص باللغة العربية
We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbulence enters a state characterized by a very slow evolution of statistics (the quasi-stationary state - QSS), and we concentrate on the detailed examination of the basic statistical functions in this state depending on the shape and the width of the initial spectrum. In particular, we show that the probability density function (PDF) of wavefield intensity is nearly independent of the initial spectrum and is very well approximated by a certain Bessel function representing an integral of the product of two exponential distributions. The PDF corresponds to the value of the second-order moment of intensity equal to 4, indicating enhanced generation of rogue waves. All waves of large amplitude that we have studied are very well approximated - both in space and in time - by the rational breather solutions of either the first (the Peregrine breather), or the second orders.
We study numerically the nonlinear stage of modulational instability (MI) of cnoidal waves, in the framework of the focusing one-dimensional Nonlinear Schrodinger (NLS) equation. Cnoidal waves are the exact periodic solutions of the NLS equation and
We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schr{o}dinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonl
We study numerically the integrable turbulence in the framework of the focusing one-dimensional nonlinear Schrodinger equation using a new method -- the growing of turbulence. We add to the equation a weak controlled pumping term and start adiabatic
We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density (proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing one-dimensional Nonlinear Schr{o
Using similarity transformations we construct explicit nontrivial solutions of nonlinear Schrodinger equations with potentials and nonlinearities depending on time and on the spatial coordinates. We present the general theory and use it to calculate