ﻻ يوجد ملخص باللغة العربية
We study numerically the properties of (statistically) homogeneous soliton gas depending on soliton density (proportional to number of solitons per unit length) and soliton velocities, in the framework of the focusing one-dimensional Nonlinear Schr{o}dinger (NLS) equation. In order to model such gas we use N-soliton solutions (N-SS) with $Nsim 100$, which we generate with specific implementation of the dressing method combined with 100-digits arithmetics. We examine the major statistical characteristics, in particular the kinetic and potential energies, the kurtosis, the wave-action spectrum and the probability density function (PDF) of wave intensity. We show that in the case of small soliton density the kinetic and potential energies, as well as the kurtosis, are very well described by the analytical relations derived without taking into account soliton interactions. With increasing soliton density and velocities, soliton interactions enhance, and we observe increasing deviations from these relations leading to increased absolute values for all of these three characteristics. The wave-action spectrum is smooth, decays close to exponentially at large wavenumbers and widens with increasing soliton density and velocities. The PDF of wave intensity deviates from the exponential (Rayleigh) PDF drastically for rarefied soliton gas, transforming much closer to it at densities corresponding to essential interaction between the solitons. Rogue waves emerging in soliton gas are multi-soliton collisions, and yet some of them have spatial profiles very similar to those of the Peregrine solutions of different orders. We present example of three-soliton collision, for which even the temporal behavior of the maximal amplitude is very well approximated by the Peregrine solution of the second order.
In this brief report we study numerically the spontaneous emergence of rogue waves in (i) modulationally unstable plane wave at its long-time statistically stationary state and (ii) bound-state multi-soliton solutions representing the solitonic model
We propose a novel, analytically tractable, scenario of the rogue wave formation in the framework of the small-dispersion focusing nonlinear Schrodinger (NLS) equation with the initial condition in the form of a rectangular barrier (a box). We use th
We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbul
We present a theoretical study of extreme events occurring in phononic lattices. In particular, we focus on the formation of rogue or freak waves, which are characterized by their localization in both spatial and temporal domains. We consider two exa
Rogue waves are abnormally large waves which appear unexpectedly and have attracted considerable attention, particularly in recent years. The one space, one time (1+1) nonlinear Schrodinger equation is often used to model rogue waves; it is an envelo