ﻻ يوجد ملخص باللغة العربية
We study numerically the nonlinear stage of modulational instability (MI) of cnoidal waves, in the framework of the focusing one-dimensional Nonlinear Schrodinger (NLS) equation. Cnoidal waves are the exact periodic solutions of the NLS equation and can be represented as a lattice of overlapping solitons. MI of these lattices lead to development of integrable turbulence [Zakharov V.E., Stud. Appl. Math. 122, 219-234 (2009)]. We study the major characteristics of the turbulence for dn-branch of cnoidal waves and demonstrate how these characteristics depend on the degree of overlapping between the solitons within the cnoidal wave. Integrable turbulence, that develops from MI of dn-branch of cnoidal waves, asymptotically approaches to its stationary state in oscillatory way. During this process kinetic and potential energies oscillate around their asymptotic values. The amplitudes of these oscillations decay with time as t^{-a}, 1<a<1.5, the phases contain nonlinear phase shift decaying as t^{-1/2}, and the frequency of the oscillations is equal to the double maximal growth rate of the MI, s=2g_{max}. In the asymptotic stationary state the ratio of potential to kinetic energy is equal to -2. The asymptotic PDF of wave amplitudes is close to Rayleigh distribution for cnoidal waves with strong overlapping, and is significantly non-Rayleigh one for cnoidal waves with weak overlapping of solitons. In the latter case the dynamics of the system reduces to two-soliton collisions, which occur with exponentially small rate and provide up to two-fold increase in amplitude compared with the original cnoidal wave.
We study numerically the integrable turbulence developing from strongly nonlinear partially coherent waves, in the framework of the focusing one-dimensional nonlinear Schrodinger equation. We find that shortly after the beginning of motion the turbul
We examine integrable turbulence (IT) in the framework of the defocusing cubic one-dimensional nonlinear Schr{o}dinger equation. This is done theoretically and experimentally, by realizing an optical fiber experiment in which the defocusing Kerr nonl
We study numerically the integrable turbulence in the framework of the focusing one-dimensional nonlinear Schrodinger equation using a new method -- the growing of turbulence. We add to the equation a weak controlled pumping term and start adiabatic
The nonlinear stage of modulational instability in optical fibers induced by a wide and easily accessible class of localized perturbations is studied using the nonlinear Schrodinger equation. It is showed that the development of associated spatio-tem
We study the azimuthal modulational instability of vortices with different topological charges, in the focusing two-dimensional nonlinear Schr{o}dinger (NLS) equation. The method of studying the stability relies on freezing the radial direction in th