ﻻ يوجد ملخص باللغة العربية
Point-of-Interest (POI) recommendation has been extensively studied and successfully applied in industry recently. However, most existing approaches build centralized models on the basis of collecting users data. Both private data and models are held by the recommender, which causes serious privacy concerns. In this paper, we propose a novel Privacy preserving POI Recommendation (PriRec) framework. First, to protect data privacy, users private data (features and actions) are kept on their own side, e.g., Cellphone or Pad. Meanwhile, the public data need to be accessed by all the users are kept by the recommender to reduce the storage costs of users devices. Those public data include: (1) static data only related to the status of POI, such as POI categories, and (2) dynamic data depend on user-POI actions such as visited counts. The dynamic data could be sensitive, and we develop local differential privacy techniques to release such data to public with privacy guarantees. Second, PriRec follows the representations of Factorization Machine (FM) that consists of linear model and the feature interaction model. To protect the model privacy, the linear models are saved on users side, and we propose a secure decentralized gradient descent protocol for users to learn it collaboratively. The feature interaction model is kept by the recommender since there is no privacy risk, and we adopt secure aggregation strategy in federated learning paradigm to learn it. To this end, PriRec keeps users private raw data and models in users own hands, and protects user privacy to a large extent. We apply PriRec in real-world datasets, and comprehensive experiments demonstrate that, compared with FM, PriRec achieves comparable or even better recommendation accuracy.
In this paper, we present a general multiparty modeling paradigm with Privacy Preserving Principal Component Analysis (PPPCA) for horizontally partitioned data. PPPCA can accomplish multiparty cooperative execution of PCA under the premise of keeping
As machine learning becomes a practice and commodity, numerous cloud-based services and frameworks are provided to help customers develop and deploy machine learning applications. While it is prevalent to outsource model training and serving tasks in
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural
Convolutional neural network is a machine-learning model widely applied in various prediction tasks, such as computer vision and medical image analysis. Their great predictive power requires extensive computation, which encourages model owners to hos
Tree-based models are among the most efficient machine learning techniques for data mining nowadays due to their accuracy, interpretability, and simplicity. The recent orthogonal needs for more data and privacy protection call for collaborative priva