ترغب بنشر مسار تعليمي؟ اضغط هنا

Privacy Preserving PCA for Multiparty Modeling

93   0   0.0 ( 0 )
 نشر من قبل Yingting Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we present a general multiparty modeling paradigm with Privacy Preserving Principal Component Analysis (PPPCA) for horizontally partitioned data. PPPCA can accomplish multiparty cooperative execution of PCA under the premise of keeping plaintext data locally. We also propose implementations using two techniques, i.e., homomorphic encryption and secret sharing. The output of PPPCA can be sent directly to data consumer to build any machine learning models. We conduct experiments on three UCI benchmark datasets and a real-world fraud detection dataset. Results show that the accuracy of the model built upon PPPCA is the same as the model with PCA that is built based on centralized plaintext data.

قيم البحث

اقرأ أيضاً

Point-of-Interest (POI) recommendation has been extensively studied and successfully applied in industry recently. However, most existing approaches build centralized models on the basis of collecting users data. Both private data and models are held by the recommender, which causes serious privacy concerns. In this paper, we propose a novel Privacy preserving POI Recommendation (PriRec) framework. First, to protect data privacy, users private data (features and actions) are kept on their own side, e.g., Cellphone or Pad. Meanwhile, the public data need to be accessed by all the users are kept by the recommender to reduce the storage costs of users devices. Those public data include: (1) static data only related to the status of POI, such as POI categories, and (2) dynamic data depend on user-POI actions such as visited counts. The dynamic data could be sensitive, and we develop local differential privacy techniques to release such data to public with privacy guarantees. Second, PriRec follows the representations of Factorization Machine (FM) that consists of linear model and the feature interaction model. To protect the model privacy, the linear models are saved on users side, and we propose a secure decentralized gradient descent protocol for users to learn it collaboratively. The feature interaction model is kept by the recommender since there is no privacy risk, and we adopt secure aggregation strategy in federated learning paradigm to learn it. To this end, PriRec keeps users private raw data and models in users own hands, and protects user privacy to a large extent. We apply PriRec in real-world datasets, and comprehensive experiments demonstrate that, compared with FM, PriRec achieves comparable or even better recommendation accuracy.
Federated learning has emerged as a promising approach for collaborative and privacy-preserving learning. Participants in a federated learning process cooperatively train a model by exchanging model parameters instead of the actual training data, whi ch they might want to keep private. However, parameter interaction and the resulting model still might disclose information about the training data used. To address these privacy concerns, several approaches have been proposed based on differential privacy and secure multiparty computation (SMC), among others. They often result in large communication overhead and slow training time. In this paper, we propose HybridAlpha, an approach for privacy-preserving federated learning employing an SMC protocol based on functional encryption. This protocol is simple, efficient and resilient to participants dropping out. We evaluate our approach regarding the training time and data volume exchanged using a federated learning process to train a CNN on the MNIST data set. Evaluation against existing crypto-based SMC solutions shows that HybridAlpha can reduce the training time by 68% and data transfer volume by 92% on average while providing the same model performance and privacy guarantees as the existing solutions.
Federated learning (FL) is an emerging paradigm that enables multiple organizations to jointly train a model without revealing their private data to each other. This paper studies {it vertical} federated learning, which tackles the scenarios where (i ) collaborating organizations own data of the same set of users but with disjoint features, and (ii) only one organization holds the labels. We propose Pivot, a novel solution for privacy preserving vertical decision tree training and prediction, ensuring that no intermediate information is disclosed other than those the clients have agreed to release (i.e., the final tree model and the prediction output). Pivot does not rely on any trusted third party and provides protection against a semi-honest adversary that may compromise $m-1$ out of $m$ clients. We further identify two privacy leakages when the trained decision tree model is released in plaintext and propose an enhanced protocol to mitigate them. The proposed solution can also be extended to tree ensemble models, e.g., random forest (RF) and gradient boosting decision tree (GBDT) by treating single decision trees as building blocks. Theoretical and experimental analysis suggest that Pivot is efficient for the privacy achieved.
As machine learning becomes a practice and commodity, numerous cloud-based services and frameworks are provided to help customers develop and deploy machine learning applications. While it is prevalent to outsource model training and serving tasks in the cloud, it is important to protect the privacy of sensitive samples in the training dataset and prevent information leakage to untrusted third parties. Past work have shown that a malicious machine learning service provider or end user can easily extract critical information about the training samples, from the model parameters or even just model outputs. In this paper, we propose a novel and generic methodology to preserve the privacy of training data in machine learning applications. Specifically we introduce an obfuscate function and apply it to the training data before feeding them to the model training task. This function adds random noise to existing samples, or augments the dataset with new samples. By doing so sensitive information about the properties of individual samples, or statistical properties of a group of samples, is hidden. Meanwhile the model trained from the obfuscated dataset can still achieve high accuracy. With this approach, the customers can safely disclose the data or models to third-party providers or end users without the need to worry about data privacy. Our experiments show that this approach can effective defeat four existing types of machine learning privacy attacks at negligible accuracy cost.
In this paper, we address the problem of privacy-preserving training and evaluation of neural networks in an $N$-party, federated learning setting. We propose a novel system, POSEIDON, the first of its kind in the regime of privacy-preserving neural network training. It employs multiparty lattice-based cryptography to preserve the confidentiality of the training data, the model, and the evaluation data, under a passive-adversary model and collusions between up to $N-1$ parties. To efficiently execute the secure backpropagation algorithm for training neural networks, we provide a generic packing approach that enables Single Instruction, Multiple Data (SIMD) operations on encrypted data. We also introduce arbitrary linear transformations within the cryptographic bootstrapping operation, optimizing the costly cryptographic computations over the parties, and we define a constrained optimization problem for choosing the cryptographic parameters. Our experimental results show that POSEIDON achieves accuracy similar to centralized or decentralized non-private approaches and that its computation and communication overhead scales linearly with the number of parties. POSEIDON trains a 3-layer neural network on the MNIST dataset with 784 features and 60K samples distributed among 10 parties in less than 2 hours.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا