ترغب بنشر مسار تعليمي؟ اضغط هنا

Action Segmentation with Joint Self-Supervised Temporal Domain Adaptation

168   0   0.0 ( 0 )
 نشر من قبل Min-Hung Chen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite the recent progress of fully-supervised action segmentation techniques, the performance is still not fully satisfactory. One main challenge is the problem of spatiotemporal variations (e.g. different people may perform the same activity in various ways). Therefore, we exploit unlabeled videos to address this problem by reformulating the action segmentation task as a cross-domain problem with domain discrepancy caused by spatio-temporal variations. To reduce the discrepancy, we propose Self-Supervised Temporal Domain Adaptation (SSTDA), which contains two self-supervised auxiliary tasks (binary and sequential domain prediction) to jointly align cross-domain feature spaces embedded with local and global temporal dynamics, achieving better performance than other Domain Adaptation (DA) approaches. On three challenging benchmark datasets (GTEA, 50Salads, and Breakfast), SSTDA outperforms the current state-of-the-art method by large margins (e.g. for the F1@25 score, from 59.6% to 69.1% on Breakfast, from 73.4% to 81.5% on 50Salads, and from 83.6% to 89.1% on GTEA), and requires only 65% of the labeled training data for comparable performance, demonstrating the usefulness of adapting to unlabeled target videos across variations. The source code is available at https://github.com/cmhungsteve/SSTDA.

قيم البحث

اقرأ أيضاً

The main progress for action segmentation comes from densely-annotated data for fully-supervised learning. Since manual annotation for frame-level actions is time-consuming and challenging, we propose to exploit auxiliary unlabeled videos, which are much easier to obtain, by shaping this problem as a domain adaptation (DA) problem. Although various DA techniques have been proposed in recent years, most of them have been developed only for the spatial direction. Therefore, we propose Mixed Temporal Domain Adaptation (MTDA) to jointly align frame- and video-level embedded feature spaces across domains, and further integrate with the domain attention mechanism to focus on aligning the frame-level features with higher domain discrepancy, leading to more effective domain adaptation. Finally, we evaluate our proposed methods on three challenging datasets (GTEA, 50Salads, and Breakfast), and validate that MTDA outperforms the current state-of-the-art methods on all three datasets by large margins (e.g. 6.4% gain on F1@50 and 6.8% gain on the edit score for GTEA).
Most modern approaches for domain adaptive semantic segmentation rely on continued access to source data during adaptation, which may be infeasible due to computational or privacy constraints. We focus on source-free domain adaptation for semantic se gmentation, wherein a source model must adapt itself to a new target domain given only unlabeled target data. We propose Self-Supervised Selective Self-Training (S4T), a source-free adaptation algorithm that first uses the models pixel-level predictive consistency across diverse views of each target image along with model confidence to classify pixel predictions as either reliable or unreliable. Next, the model is self-trained, using predicted pseudolabels for reliable predictions and pseudolabels inferred via a selective interpolation strategy for unreliable ones. S4T matches or improves upon the state-of-the-art in source-free adaptation on 3 standard benchmarks for semantic segmentation within a single epoch of adaptation.
401 - L. Xiao , J. Xu , D. Zhao 2020
We consider the problem of unsupervised domain adaptation for image classification. To learn target-domain-aware features from the unlabeled data, we create a self-supervised pretext task by augmenting the unlabeled data with a certain type of transf ormation (specifically, image rotation) and ask the learner to predict the properties of the transformation. However, the obtained feature representation may contain a large amount of irrelevant information with respect to the main task. To provide further guidance, we force the feature representation of the augmented data to be consistent with that of the original data. Intuitively, the consistency introduces additional constraints to representation learning, therefore, the learned representation is more likely to focus on the right information about the main task. Our experimental results validate the proposed method and demonstrate state-of-the-art performance on classical domain adaptation benchmarks. Code is available at https://github.com/Jiaolong/ss-da-consistency.
The need for training data can impede the adoption of novel imaging modalities for learning-based medical image analysis. Domain adaptation methods partially mitigate this problem by translating training data from a related source domain to a novel t arget domain, but typically assume that a one-to-one translation is possible. Our work addresses the challenge of adapting to a more informative target domain where multiple target samples can emerge from a single source sample. In particular we consider translating from mp-MRI to VERDICT, a richer MRI modality involving an optimized acquisition protocol for cancer characterization. We explicitly account for the inherent uncertainty of this mapping and exploit it to generate multiple outputs conditioned on a single input. Our results show that this allows us to extract systematically better image representations for the target domain, when used in tandem with both simple, CycleGAN-based baselines, as well as more powerful approaches that integrate discriminative segmentation losses and/or residual adapters. When compared to its deterministic counterparts, our approach yields substantial improvements across a broad range of dataset sizes, increasingly strong baselines, and evaluation measures.
While fully-supervised deep learning yields good models for urban scene semantic segmentation, these models struggle to generalize to new environments with different lighting or weather conditions for instance. In addition, producing the extensive pi xel-level annotations that the task requires comes at a great cost. Unsupervised domain adaptation (UDA) is one approach that tries to address these issues in order to make such systems more scalable. In particular, self-supervised learning (SSL) has recently become an effective strategy for UDA in semantic segmentation. At the core of such methods lies `pseudo-labeling, that is, the practice of assigning high-confident class predictions as pseudo-labels, subsequently used as true labels, for target data. To collect pseudo-labels, previous works often rely on the highest softmax score, which we here argue as an unfavorable confidence measurement. In this work, we propose Entropy-guided Self-supervised Learning (ESL), leveraging entropy as the confidence indicator for producing more accurate pseudo-labels. On different UDA benchmarks, ESL consistently outperforms strong SSL baselines and achieves state-of-the-art results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا