ترغب بنشر مسار تعليمي؟ اضغط هنا

S4T: Source-free domain adaptation for semantic segmentation via self-supervised selective self-training

95   0   0.0 ( 0 )
 نشر من قبل Viraj Prabhu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most modern approaches for domain adaptive semantic segmentation rely on continued access to source data during adaptation, which may be infeasible due to computational or privacy constraints. We focus on source-free domain adaptation for semantic segmentation, wherein a source model must adapt itself to a new target domain given only unlabeled target data. We propose Self-Supervised Selective Self-Training (S4T), a source-free adaptation algorithm that first uses the models pixel-level predictive consistency across diverse views of each target image along with model confidence to classify pixel predictions as either reliable or unreliable. Next, the model is self-trained, using predicted pseudolabels for reliable predictions and pseudolabels inferred via a selective interpolation strategy for unreliable ones. S4T matches or improves upon the state-of-the-art in source-free adaptation on 3 standard benchmarks for semantic segmentation within a single epoch of adaptation.



قيم البحث

اقرأ أيضاً

131 - Yuang Liu , Wei Zhang , Jun Wang 2021
Unsupervised Domain Adaptation (UDA) can tackle the challenge that convolutional neural network(CNN)-based approaches for semantic segmentation heavily rely on the pixel-level annotated data, which is labor-intensive. However, existing UDA approaches in this regard inevitably require the full access to source datasets to reduce the gap between the source and target domains during model adaptation, which are impractical in the real scenarios where the source datasets are private, and thus cannot be released along with the well-trained source models. To cope with this issue, we propose a source-free domain adaptation framework for semantic segmentation, namely SFDA, in which only a well-trained source model and an unlabeled target domain dataset are available for adaptation. SFDA not only enables to recover and preserve the source domain knowledge from the source model via knowledge transfer during model adaptation, but also distills valuable information from the target domain for self-supervised learning. The pixel- and patch-level optimization objectives tailored for semantic segmentation are seamlessly integrated in the framework. The extensive experimental results on numerous benchmark datasets highlight the effectiveness of our framework against the existing UDA approaches relying on source data.
We present a novel approach for unsupervised road segmentation in adverse weather conditions such as rain or fog. This includes a new algorithm for source-free domain adaptation (SFDA) using self-supervised learning. Moreover, our approach uses sever al techniques to address various challenges in SFDA and improve performance, including online generation of pseudo-labels and self-attention as well as use of curriculum learning, entropy minimization and model distillation. We have evaluated the performance on $6$ datasets corresponding to real and synthetic adverse weather conditions. Our method outperforms all prior works on unsupervised road segmentation and SFDA by at least 10.26%, and improves the training time by 18-180x. Moreover, our self-supervised algorithm exhibits similar accuracy performance in terms of mIOU score as compared to prior supervised methods.
Convolutional neural network-based approaches have achieved remarkable progress in semantic segmentation. However, these approaches heavily rely on annotated data which are labor intensive. To cope with this limitation, automatically annotated data g enerated from graphic engines are used to train segmentation models. However, the models trained from synthetic data are difficult to transfer to real images. To tackle this issue, previous works have considered directly adapting models from the source data to the unlabeled target data (to reduce the inter-domain gap). Nonetheless, these techniques do not consider the large distribution gap among the target data itself (intra-domain gap). In this work, we propose a two-step self-supervised domain adaptation approach to minimize the inter-domain and intra-domain gap together. First, we conduct the inter-domain adaptation of the model; from this adaptation, we separate the target domain into an easy and hard split using an entropy-based ranking function. Finally, to decrease the intra-domain gap, we propose to employ a self-supervised adaptation technique from the easy to the hard split. Experimental results on numerous benchmark datasets highlight the effectiveness of our method against existing state-of-the-art approaches. The source code is available at https://github.com/feipan664/IntraDA.git.
Learning to reliably perceive and understand the scene is an integral enabler for robots to operate in the real-world. This problem is inherently challenging due to the multitude of object types as well as appearance changes caused by varying illumin ation and weather conditions. Leveraging complementary modalities can enable learning of semantically richer representations that are resilient to such perturbations. Despite the tremendous progress in recent years, most multimodal convolutional neural network approaches directly concatenate feature maps from individual modality streams rendering the model incapable of focusing only on relevant complementary information for fusion. To address this limitation, we propose a mutimodal semantic segmentation framework that dynamically adapts the fusion of modality-specific features while being sensitive to the object category, spatial location and scene context in a self-supervised manner. Specifically, we propose an architecture consisting of two modality-specific encoder streams that fuse intermediate encoder representations into a single decoder using our proposed self-supervised model adaptation fusion mechanism which optimally combines complementary features. As intermediate representations are not aligned across modalities, we introduce an attention scheme for better correlation. In addition, we propose a computationally efficient unimodal segmentation architecture termed AdapNet++ that incorporates a new encoder with multiscale residual units and an efficient atrous spatial pyramid pooling that has a larger effective receptive field with more than 10x fewer parameters, complemented with a strong decoder with a multi-resolution supervision scheme that recovers high-resolution details. Comprehensive empirical evaluations on several benchmarks demonstrate that both our unimodal and multimodal architectures achieve state-of-the-art performance.
It is a strong prerequisite to access source data freely in many existing unsupervised domain adaptation approaches. However, source data is agnostic in many practical scenarios due to the constraints of expensive data transmission and data privacy p rotection. Usually, the given source domain pre-trained model is expected to optimize with only unlabeled target data, which is termed as source-free unsupervised domain adaptation. In this paper, we solve this problem from the perspective of noisy label learning, since the given pre-trained model can pre-generate noisy label for unlabeled target data via directly network inference. Under this problem modeling, incorporating self-supervised learning, we propose a novel Self-Supervised Noisy Label Learning method, which can effectively fine-tune the pre-trained model with pre-generated label as well as selfgenerated label on the fly. Extensive experiments had been conducted to validate its effectiveness. Our method can easily achieve state-of-the-art results and surpass other methods by a very large margin. Code will be released.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا