ترغب بنشر مسار تعليمي؟ اضغط هنا

Entropy Dynamics of Phonon Quantum States Generated by Optical Excitation of a Two-Level System

121   0   0.0 ( 0 )
 نشر من قبل Daniel Wigger
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In quantum physics, two prototypical model systems stand out due to their wide range of applications. These are the two-level system (TLS) and the harmonic oscillator. The former is often an ideal model for confined charge or spin systems and the latter for lattice vibrations, i.e., phonons. Here, we couple these two systems, which leads to numerous fascinating physical phenomena. Practically, we consider different optical excitations and decay scenarios of a TLS, focusing on the generated dynamics of a single phonon mode that couples to the TLS. Special emphasis is placed on the entropy of the different parts of the system, predominantly the phonons. While, without any decay, the entire system is always in a pure state, resulting in a vanishing entropy, the complex interplay between the single parts results in non-vanishing respective entanglement entropies and non-trivial dynamics of them. Taking a decay of the TLS into account leads to a non-vanishing entropy of the full system and additional aspects in its dynamics. We demonstrate that all aspects of the entropys behavior can be traced back to the purity of the states and are illustrated by phonon Wigner functions in phase space.

قيم البحث

اقرأ أيضاً

The study of the fundamental properties of phonons is crucial to understand their role in applica- tions in quantum information science, where the active use of phonons is currently highly debated. A genuine quantum phenomenon associated with the flu ctuation properties of phonons is squeezing, which is achieved when the fluctuations of a certain variable drop below their respective vacuum value. We consider a semiconductor quantum dot in which the exciton is coupled to phonons. We review the fluctuation properties of the phonons, which are generated by optical manipulation of the quantum dot, in the limiting case of ultra short pulses. Then we discuss the phonon properties for an excitation with finite pulses. Within a generating function formalism we calculate the corre- sponding fluctuation properties of the phonons and show that phonon squeezing can be achieved by the optical manipulation of the quantum dot exciton for certain conditions even for a single pulse excitation where neither for short nor for long pulses squeezing occurs. To explain the occurrence of squeezing we employ a Wigner function picture providing a detailed understanding of the induced quantum dynamics.
Coupling electromagnetic waves in a cavity and mechanical vibrations via the radiation pressure of the photons [1,2] is a promising platform for investigations of quantum mechanical properties of motion of macroscopic bodies and thereby the limits of quantum mechanics [3,4]. A drawback is that the effect of one photon tends to be tiny, and hence one of the pressing challenges is to substantially increase the interaction strength towards the scale of the cavity damping rate. A novel scenario is to introduce into the setup a quantum two-level system (qubit), which, besides strengthening the coupling, allows for rich physics via strongly enhanced nonlinearities [5-8]. Addressing these issues, here we present a design of cavity optomechanics in the microwave frequency regime involving a Josephson junction qubit. We demonstrate boosting of the radiation pressure interaction energy by six orders of magnitude, allowing to approach the strong coupling regime, where a single quantum of vibrations shifts the cavity frequency by more than its linewidth. We observe nonlinear phenomena at single-photon energies, such as an enhanced damping due to the two-level system. This work opens up nonlinear cavity optomechanics as a plausible tool for the study of quantum properties of motion.
Hybrid quantum optomechanical systems offer an interface between a single two-level system and a macroscopical mechanical degree of freedom. In this work, we build a hybrid system made of a vibrating microwire coupled to a single semiconductor quantu m dot (QD) via material strain. It was shown a few years ago, that the QD excitonic transition energy can thus be modulated by the microwire motion. We demonstrate here the reverse effect, whereby the wire is set in motion by the resonant drive of a single QD exciton with a laser modulated at the mechanical frequency. The resulting driving force is found to be almost 3 orders of magnitude larger than radiation pressure. From a fundamental aspect, this state dependent force offers a convenient strategy to map the QD quantum state onto a mechanical degree of freedom.
In the present paper, we have proposed the experimentally achievable method for the characterization of the collective states of qubits in a linear chain. We study temporal dynamics of absorption of a single-photon pulse by three interacting qubits e mbedded in a one-dimensional waveguide. Numerical simulations were performed for a Gaussian-shaped pulse with different frequency detunings and interaction parameters between qubits. The dynamic behavior of the excitation probability for each qubit is investigated. It was shown that the maximum probability amplitudes of excitation of qubits are reached when the frequency of external excitation coincides with the frequency of excitation of the a corresponding eigenstate of the system. In this case, the the magnitude of the probability amplitude of each qubit in the chain unambiguously correlates with the contribution of this qubit to the corresponding collective state of the system, and the decay of these amplitudes are determined by the resonance width arising from the interaction of the qubit with the photon field of the waveguide. Therefore, we show that the pulsed harmonic probe can be used for the characterization of the energies, widths, and the wavefunctions of the collective states in a one-dimensional qubit chain.
We present a detailed theoretical analysis of a multi-level quantum system coupled to two radiation fields and subject to decoherence. We concentrate on an effect known from quantum optics as the Autler-Townes splitting, which has been recently demon strated experimentally [M. A. Sillanpaa et al., Phys. Rev. Lett. 103, 193601 (2009)] in a superconducting phase qubit. In the three-level approximation, we derive analytical solutions and describe how they can be used to extract the decoherence rates and to account for the measurement data. Better agreement with the experiment can be obtained by extending this model to five levels. Finally, we investigate the stationary states created in the experiment and show that their structure is close to that of dark states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا