ﻻ يوجد ملخص باللغة العربية
The study of the fundamental properties of phonons is crucial to understand their role in applica- tions in quantum information science, where the active use of phonons is currently highly debated. A genuine quantum phenomenon associated with the fluctuation properties of phonons is squeezing, which is achieved when the fluctuations of a certain variable drop below their respective vacuum value. We consider a semiconductor quantum dot in which the exciton is coupled to phonons. We review the fluctuation properties of the phonons, which are generated by optical manipulation of the quantum dot, in the limiting case of ultra short pulses. Then we discuss the phonon properties for an excitation with finite pulses. Within a generating function formalism we calculate the corre- sponding fluctuation properties of the phonons and show that phonon squeezing can be achieved by the optical manipulation of the quantum dot exciton for certain conditions even for a single pulse excitation where neither for short nor for long pulses squeezing occurs. To explain the occurrence of squeezing we employ a Wigner function picture providing a detailed understanding of the induced quantum dynamics.
In quantum physics, two prototypical model systems stand out due to their wide range of applications. These are the two-level system (TLS) and the harmonic oscillator. The former is often an ideal model for confined charge or spin systems and the lat
Hybrid quantum optomechanical systems offer an interface between a single two-level system and a macroscopical mechanical degree of freedom. In this work, we build a hybrid system made of a vibrating microwire coupled to a single semiconductor quantu
We demonstrate a method of tuning a semiconductor quantum dot (QD) onto resonance with a cavity mode all-optically. We use a system comprised of two evanescently coupled cavities containing a single QD. One resonance of the coupled cavity system is u
The coherent electron spin dynamics of an ensemble of singly charged (In,Ga)As/GaAs quantum dots in a transverse magnetic field is driven by periodic optical excitation at 1 GHz repetition frequency. Despite the strong inhomogeneity of the electron $
We introduce a tomography approach to describe the optical response of a cavity quantum electrodynamics device, beyond the semiclassical image of polarization rotation, by analyzing the polarization density matrix of the reflected photons in the Poin