ترغب بنشر مسار تعليمي؟ اضغط هنا

Inducing micromechanical motion by optical excitation of a single quantum dot

74   0   0.0 ( 0 )
 نشر من قبل Jean-Philippe Poizat
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Hybrid quantum optomechanical systems offer an interface between a single two-level system and a macroscopical mechanical degree of freedom. In this work, we build a hybrid system made of a vibrating microwire coupled to a single semiconductor quantum dot (QD) via material strain. It was shown a few years ago, that the QD excitonic transition energy can thus be modulated by the microwire motion. We demonstrate here the reverse effect, whereby the wire is set in motion by the resonant drive of a single QD exciton with a laser modulated at the mechanical frequency. The resulting driving force is found to be almost 3 orders of magnitude larger than radiation pressure. From a fundamental aspect, this state dependent force offers a convenient strategy to map the QD quantum state onto a mechanical degree of freedom.

قيم البحث

اقرأ أيضاً

The study of the fundamental properties of phonons is crucial to understand their role in applica- tions in quantum information science, where the active use of phonons is currently highly debated. A genuine quantum phenomenon associated with the flu ctuation properties of phonons is squeezing, which is achieved when the fluctuations of a certain variable drop below their respective vacuum value. We consider a semiconductor quantum dot in which the exciton is coupled to phonons. We review the fluctuation properties of the phonons, which are generated by optical manipulation of the quantum dot, in the limiting case of ultra short pulses. Then we discuss the phonon properties for an excitation with finite pulses. Within a generating function formalism we calculate the corre- sponding fluctuation properties of the phonons and show that phonon squeezing can be achieved by the optical manipulation of the quantum dot exciton for certain conditions even for a single pulse excitation where neither for short nor for long pulses squeezing occurs. To explain the occurrence of squeezing we employ a Wigner function picture providing a detailed understanding of the induced quantum dynamics.
In quantum physics, two prototypical model systems stand out due to their wide range of applications. These are the two-level system (TLS) and the harmonic oscillator. The former is often an ideal model for confined charge or spin systems and the lat ter for lattice vibrations, i.e., phonons. Here, we couple these two systems, which leads to numerous fascinating physical phenomena. Practically, we consider different optical excitations and decay scenarios of a TLS, focusing on the generated dynamics of a single phonon mode that couples to the TLS. Special emphasis is placed on the entropy of the different parts of the system, predominantly the phonons. While, without any decay, the entire system is always in a pure state, resulting in a vanishing entropy, the complex interplay between the single parts results in non-vanishing respective entanglement entropies and non-trivial dynamics of them. Taking a decay of the TLS into account leads to a non-vanishing entropy of the full system and additional aspects in its dynamics. We demonstrate that all aspects of the entropys behavior can be traced back to the purity of the states and are illustrated by phonon Wigner functions in phase space.
Using background-free detection of spin-state-dependent resonance fluorescence from a single-electron charged quantum dot with an efficiency of 0:1%, we realize a single spin-photon interface where the detection of a scattered photon with 300 picosec ond time resolution projects the quantum dot spin to a definite spin eigenstate with fidelity exceeding 99%. The bunching of resonantly scattered photons reveals information about electron spin dynamics. High-fidelity fast spin-state initialization heralded by a single photon enables the realization of quantum information processing tasks such as non-deterministic distant spin entanglement. Given that we could suppress the measurement back-action to well below the natural spin-flip rate, realization of a quantum non-demolition measurement of a single spin could be achieved by increasing the fluorescence collection efficiency by a factor exceeding 20 using a photonic nanostructure.
We demonstrate the effects of cavity quantum electrodynamics for a quantum dot coupled to a photonic molecule, consisting of a pair of coupled photonic crystal cavities. We show anti-crossing between the quantum dot and the two super-modes of the pho tonic molecule, signifying achievement of the strong coupling regime. From the anti-crossing data, we estimate the contributions of both mode-coupling and intrinsic detuning to the total detuning between the super-modes. Finally, we also show signatures of off-resonant cavity-cavity interaction in the photonic molecule.
We propose an approach for achieving ground-state cooling of a nanomechanical resonator (NAMR) capacitively coupled to a triple quantum dot (TQD). This TQD is an electronic analog of a three-level atom in $Lambda$ configuration which allows an electr on to enter it via lower-energy states and to exit only from a higher-energy state. By tuning the degeneracy of the two lower-energy states in the TQD, an electron can be trapped in a dark state caused by destructive quantum interference between the two tunneling pathways to the higher-energy state. Therefore, ground-state cooling of an NAMR can be achieved when electrons absorb readily and repeatedly energy quanta from the NAMR for excitations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا