ﻻ يوجد ملخص باللغة العربية
We study a quantum particle coupled to hard-core bosons and propagating on disordered ladders with $R$ legs. The particle dynamics is studied with the help of rate equations for the boson-assisted transitions between the Anderson states. We demonstrate that for finite $R < infty$ and sufficiently strong disorder the dynamics is subdiffusive, while the two-dimensional planar systems with $Rto infty$ appear to be diffusive for arbitrarily strong disorder. The transition from diffusive to subdiffusive regimes may be identified via statistical fluctuations of resistivity. The corresponding distribution function in the diffusive regime has fat tails which decrease with the system size $L$ much slower than $1/sqrt{L}$. Finally, we present evidence that similar non--Gaussian fluctuations arise also in standard models of many-body localization, i.e., in strongly disordered quantum spin chains.
The description of dynamics of strongly correlated quantum matter is a challenge, particularly in physical situations where a quasiparticle description is absent. In such situations, however, the many-body Kubo formula from linear response theory, in
Impurities, defects, and other types of imperfections are ubiquitous in realistic quantum many-body systems and essentially unavoidable in solid state materials. Often, such random disorder is viewed purely negatively as it is believed to prevent int
The existence of many-body mobility edges in closed quantum systems has been the focus of intense debate after the emergence of the description of the many-body localization phenomenon. Here we propose that this issue can be settled in experiments by
Precise nature of MBL transitions in both random and quasiperiodic (QP) systems remains elusive so far. In particular, whether MBL transitions in QP and random systems belong to the same universality class or two distinct ones has not been decisively
Many-body localization is a striking mechanism that prevents interacting quantum systems from thermalizing. The absence of thermalization behaviour manifests itself, for example, in a remanence of local particle number configurations, a quantity that