ترغب بنشر مسار تعليمي؟ اضغط هنا

TLFW: A Three-layer Framework in Wireless Rechargeable Sensor Network with a Mobile Base Station

63   0   0.0 ( 0 )
 نشر من قبل Anwen Wang
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Wireless sensor networks as the base support for the Internet of things has been a large number of popularity and application. Such as intelligent agriculture, we have to use the sensor network to obtain the growth environmental data of crops, etc.. However, the difficulty of power supply of wireless nodes has seriously hindered the application and development of Internet of things. In order to solve this problem, people use low-power, sleep scheduling and other energy-saving methods on the nodes. Although these methods can prolong the working time of nodes, they will eventually become invalid because of the exhaustion of energy. The use of solar energy, wind energy, and wireless signals in the environment to obtain energy is another way to solve the energy problem of nodes. However, these methods are affected by weather, environment and other factors, and are unstable. Thus, the discontinuity work of the node is caused. In recent years, the development of wireless power transfer (WPT) has brought another solution to this problem. In this paper, a three-layer framework is proposed for mobile station data collection in rechargeable wireless sensor networks to keep the node running forever, named TLFW which includes the sensor layer, cluster head layer, and mobile station layer. And the framework can minimize the total energy consumption of the system. The simulation results show that the scheme can reduce the energy consumption of the entire system, compared with a Mobile Station in a Rechargeable Sensor Network(MSiRSN).

قيم البحث

اقرأ أيضاً

This paper unveils the importance of intelligent reflecting surface (IRS) in a wireless powered sensor network (WPSN). Specifically, a multi-antenna power station (PS) employs energy beamforming to provide wireless charging for multiple Internet of T hings (IoT) devices, which utilize the harvested energy to deliver their own messages to an access point (AP). Meanwhile, an IRS is deployed to enhance the performances of wireless energy transfer (WET) and wireless information transfer (WIT) by intelligently adjusting the phase shift of each reflecting element. To evaluate the performance of this IRS assisted WPSN, we are interested in maximizing its system sum throughput to jointly optimize the energy beamforming of the PS, the transmission time allocation, as well as the phase shifts of the WET and WIT phases. The formulated problem is not jointly convex due to the multiple coupled variables. To deal with its non-convexity, we first independently find the phase shifts of the WIT phase in closed-form. We further propose an alternating optimization (AO) algorithm to iteratively solve the sum throughput maximization problem. To be specific, a semidefinite programming (SDP) relaxation approach is adopted to design the energy beamforming and the time allocation for given phase shifts of WET phase, which is then optimized for given energy beamforming and time allocation. Moreover, we propose an AO low-complexity scheme to significantly reduce the computational complexity incurred by the SDP relaxation, where the optimal closed-form energy beamforming, time allocation, and phase shifts of the WET phase are derived. Finally, numerical results are demonstrated to validate the effectiveness of the proposed algorithm, and highlight the beneficial role of the IRS in comparison to the benchmark schemes.
To address the problem of unsupervised outlier detection in wireless sensor networks, we develop an approach that (1) is flexible with respect to the outlier definition, (2) computes the result in-network to reduce both bandwidth and energy usage,(3) only uses single hop communication thus permitting very simple node failure detection and message reliability assurance mechanisms (e.g., carrier-sense), and (4) seamlessly accommodates dynamic updates to data. We examine performance using simulation with real sensor data streams. Our results demonstrate that our approach is accurate and imposes a reasonable communication load and level of power consumption.
In this work, we propose a joint collaboration-compression framework for sequential estimation of a random vector parameter in a resource constrained wireless sensor network (WSN). Specifically, we propose a framework where the local sensors first co llaborate (via a collaboration matrix) with each other. Then a subset of sensors selected to communicate with the FC linearly compress their observations before transmission. We design near-optimal collaboration and linear compression strategies under power constraints via alternating minimization of the sequential minimum mean square error. We show that the objective function for collaboration design can be non-convex depending on the network topology. We reformulate and solve the collaboration design problem using quadratically constrained quadratic program (QCQP). Moreover, the compression design problem is also formulated as a QCQP. We propose tw
Base station (BS) placement in mobile networks is critical to the efficient use of resources in any communication system and one of the main factors that determines the quality of communication. Although there is ample literature on the optimum place ment of BSs for sub-6 GHz bands, channel propagation characteristics, such as penetration loss, are notably different in millimeter-wave (mmWave) bands than in sub-6 GHz bands. Therefore, designated solutions are needed for mmWave systems to have reliable quality of service (QoS) assessment. This article proposes a multi-armed bandit (MAB) learning approach for the mmWave BS placement problem. The proposed solution performs viewshed analysis to identify the areas that are visible to a given BS location by considering the 3D geometry of the outdoor environments. Coverage probability, which is used as the QoS metric, is calculated using the appropriate path loss model depending on the viewshed analysis and a probabilistic blockage model and then fed to the MAB learning mechanism. The optimum BS location is then determined based on the expected reward that the candidate locations attain at the end of the training process. Unlike the optimization-based techniques, this method can capture the time-varying behavior of the channel and find the optimal BS locations that maximize long-term performance.
This paper develops a tractable framework for exploiting the potential benefits of physical layer security in three-tier wireless sensor networks using stochastic geometry. In such networks, the sensing data from the remote sensors are collected by s inks with the help of access points, and the external eavesdroppers intercept the data transmissions.We focus on the secure transmission in two scenarios: i) the active sensors transmit their sensing data to the access points, and ii) the active access points forward the data to the sinks. We derive new compact expressions for the average secrecy rate in these two scenarios. We also derive a new compact expression for the overall average secrecy rate. Numerical results corroborate our analysis and show that multiple antennas at the access points can enhance the security of three-tier wireless sensor networks. Our results show that increasing the number of access points decreases the average secrecy rate between the access point and its associated sink. However, we find that increasing the number of access points first increases the overall average secrecy rate, with a critical value beyond which the overall average secrecy rate then decreases. When increasing the number of active sensors, both the average secrecy rate between the sensor and its associated access point and the overall average secrecy rate decrease. In contrast, increasing the number of sinks improves both the average secrecy rate between the access point and its associated sink, as well as the overall average secrecy rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا