ترغب بنشر مسار تعليمي؟ اضغط هنا

Outdoor mmWave Base Station Placement: A Multi-Armed Bandit Learning Approach

141   0   0.0 ( 0 )
 نشر من قبل Fatih Erden
 تاريخ النشر 2020
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Base station (BS) placement in mobile networks is critical to the efficient use of resources in any communication system and one of the main factors that determines the quality of communication. Although there is ample literature on the optimum placement of BSs for sub-6 GHz bands, channel propagation characteristics, such as penetration loss, are notably different in millimeter-wave (mmWave) bands than in sub-6 GHz bands. Therefore, designated solutions are needed for mmWave systems to have reliable quality of service (QoS) assessment. This article proposes a multi-armed bandit (MAB) learning approach for the mmWave BS placement problem. The proposed solution performs viewshed analysis to identify the areas that are visible to a given BS location by considering the 3D geometry of the outdoor environments. Coverage probability, which is used as the QoS metric, is calculated using the appropriate path loss model depending on the viewshed analysis and a probabilistic blockage model and then fed to the MAB learning mechanism. The optimum BS location is then determined based on the expected reward that the candidate locations attain at the end of the training process. Unlike the optimization-based techniques, this method can capture the time-varying behavior of the channel and find the optimal BS locations that maximize long-term performance.



قيم البحث

اقرأ أيضاً

The use of millimeter-wave (mmWave) bands in 5G networks introduce a new set of challenges to network planning. Vulnerability to blockages and high path loss at mmWave frequencies require careful planning of the network to achieve the desired service quality. In this paper, we propose a novel 3D geometry-based framework for deploying mmWave base stations (gNBs) in urban environments by considering first-order reflection effects. We also provide a solution for the optimum deployment of passive metallic reflectors (PMRs) to extend radio coverage to non-line-of-sight (NLoS) areas. In particular, we perform visibility analysis to find the direct and indirect visibility regions, and using these, we derive a geometry-and-blockage-aided path loss model. We then formulate the network planning problem as two independent optimization problems, placement of gNB(s) and PMRs, to maximize the coverage area with a certain quality-of-service constraint and minimum cost. We test the efficacy of our proposed approach using a generic map and compare our simulation results with the ray-tracing solution. Our simulation results show that considering the first-order reflections in planning the mmWave network helps reduce the number of PMRs required to cover the NLoS area and the gNB placement aided with PMRs requires fewer gNBs to cover the same area, which in turn reduces the deployment cost.
Autonomous unmanned aerial vehicles (UAVs) with on-board base station equipment can potentially provide connectivity in areas where the terrestrial infrastructure is overloaded, damaged, or absent. Use cases comprise emergency response, wildfire supp ression, surveillance, and cellular communications in crowded events to name a few. A central problem to enable this technology is to place such aerial base stations (AirBSs) in locations that approximately optimize the relevant communication metrics. To alleviate the limitations of existing algorithms, which require intensive and reliable communications among AirBSs or between the AirBSs and a central controller, this paper leverages stochastic optimization and machine learning techniques to put forth an adaptive and decentralized algorithm for AirBS placement without inter-AirBS cooperation or communication. The approach relies on a smart design of the network utility function and on a stochastic gradient ascent iteration that can be evaluated with information available in practical scenarios. To complement the theoretical convergence properties, a simulation study corroborates the effectiveness of the proposed scheme.
Shared edge computing platforms deployed at the radio access network are expected to significantly improve quality of service delivered by Application Service Providers (ASPs) in a flexible and economic way. However, placing edge service in every pos sible edge site by an ASP is practically infeasible due to the ASPs prohibitive budget requirement. In this paper, we investigate the edge service placement problem of an ASP under a limited budget, where the ASP dynamically rents computing/storage resources in edge sites to host its applications in close proximity to end users. Since the benefit of placing edge service in a specific site is usually unknown to the ASP a priori, optimal placement decisions must be made while learning this benefit. We pose this problem as a novel combinatorial contextual bandit learning problem. It is combinatorial because only a limited number of edge sites can be rented to provide the edge service given the ASPs budget. It is contextual because we utilize user context information to enable finer-grained learning and decision making. To solve this problem and optimize the edge computing performance, we propose SEEN, a Spatial-temporal Edge sErvice placemeNt algorithm. Furthermore, SEEN is extended to scenarios with overlapping service coverage by incorporating a disjunctively constrained knapsack problem. In both cases, we prove that our algorithm achieves a sublinear regret bound when it is compared to an oracle algorithm that knows the exact benefit information. Simulations are carried out on a real-world dataset, whose results show that SEEN significantly outperforms benchmark solutions.
We analyze statistical discrimination in hiring markets using a multi-armed bandit model. Myopic firms face workers arriving with heterogeneous observable characteristics. The association between the workers skill and characteristics is unknown ex an te; thus, firms need to learn it. Laissez-faire causes perpetual underestimation: minority workers are rarely hired, and therefore, underestimation towards them tends to persist. Even a slight population-ratio imbalance frequently produces perpetual underestimation. We propose two policy solutions: a novel subsidy rule (the hybrid mechanism) and the Rooney Rule. Our results indicate that temporary affirmative actions effectively mitigate discrimination caused by insufficient data.
Mobile base stations on board unmanned aerial vehicles (UAVs) promise to deliver connectivity to those areas where the terrestrial infrastructure is overloaded, damaged, or absent. A fundamental problem in this context involves determining a minimal set of locations in 3D space where such aerial base stations (ABSs) must be deployed to provide coverage to a set of users. While nearly all existing approaches rely on average characterizations of the propagation medium, this work develops a scheme where the actual channel information is exploited by means of a radio tomographic map. A convex optimization approach is presented to minimize the number of required ABSs while ensuring that the UAVs do not enter no-fly regions. A simulation study reveals that the proposed algorithm markedly outperforms its competitors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا