ﻻ يوجد ملخص باللغة العربية
We develop a numerical algorithm for the solution of the Sturm-Liouville differential equation governing the stationary radial oscillations of nonrotating compact stars. Our method is based on the Numerovs method that turns the Sturm-Liouville differential equation in an eigenvalue problem. In our development we provide a strategy to correctly deal with the star boundaries and the interfaces between layers with different mechanical properties. Assuming that the fluctuations obey the same equation of state of the background, we analyze various different stellar models and we precisely determine hundreds of eigenfrequencies and of eigenmodes. If the equation of state does not present an interface discontinuity, the fundamental radial eigenmode becomes unstable exactly at the critical central energy density corresponding to the largest gravitational mass. However, in the presence of an interface discontinuity, there exist stable configurations with a central density exceeding the critical one and with a smaller gravitational mass.
We investigate the properties of relativistic stars made of dark energy. We model stellar structure assuming i) isotropic perfect fluid and ii) a dark energy inspired equation of state, the generalized equation of state of Chaplygin gas, as we will b
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise, which accoun
The stability properties of relativistic stars against gravitational collapse to black hole is a classical problem in general relativity. A sufficient criterion for secular instability was established by Friedman, Ipser and Sorkin (1988), who proved
According to the braneworld idea, ordinary matter is confined on a 3-dimensional space (brane) that is embedded in a higher-dimensional space-time where gravity propagates. In this work, after reviewing the limits coming from general relativity, fini
We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational