ترغب بنشر مسار تعليمي؟ اضغط هنا

Compact stars in alternative theories of gravity. Einstein-Dilaton-Gauss-Bonnet gravity

274   0   0.0 ( 0 )
 نشر من قبل Emanuele Berti
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational-wave observations of compact stars. Our Lagrangian includes as special cases scalar-tensor theories (and indirectly f(R) theories) as well as models with a scalar field coupled to quadratic curvature invariants. As a first application of the formalism, we discuss (for the first time in the literature) compact stars in Einstein-Dilaton-Gauss-Bonnet gravity. We show that compact objects with central densities typical of neutron stars cannot exist for certain values of the coupling constants of the theory. In fact, the existence and stability of compact stars sets more stringent constraints on the theory than the existence of black hole solutions. This work is a first step in a program to systematically rule out (possibly using Bayesian model selection) theories that are incompatible with astrophysical observations of compact stars.



قيم البحث

اقرأ أيضاً

We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity ( GR) minimally coupled to a massless scalar field. We first show results from the weak EdGB coupling limit, where we obtain solutions that smoothly approach those of the Einstein-Klein-Gordon system of GR. Here, in the strong field case, though our code does not utilize horizon penetrating coordinates, we nevertheless find tentative evidence that approaching black hole formation the EdGB modifications cause the growth of scalar field hair, consistent with known static black hole solutions in EdGB gravity. For the strong EdGB coupling regime, in a companion paper we first showed results that even in the weak field (i.e. far from black hole formation), the EdGB equations are of mixed type: evolution of the initially hyperbolic system of partial differential equations lead to formation of a region where their character changes to elliptic. Here, we present more details about this regime. In particular, we show that an effective energy density based on the Misner-Sharp mass is negative near these elliptic regions, and similarly the null convergence condition is violated then.
154 - Maria Okounkova 2020
A present challenge in testing general relativity (GR) with binary black hole gravitational wave detections is the inability to perform model-dependent tests due to the lack of merger waveforms in beyond-GR theories. In this study, we produce the fir st numerical relativity binary black hole gravitational waveform in Einstein dilaton Gauss-Bonnet (EDGB) gravity, a higher-curvature theory of gravity with motivations in string theory. We evolve a binary black hole system in order-reduced EDGB gravity, with parameters consistent with GW150914. We focus on the merger portion of the waveform, due to the presence of secular growth in the inspiral phase. We compute mismatches with the corresponding general relativity merger waveform, finding that from a post-inspiral-only analysis, we can constrain the EDGB lengthscale to be $sqrt{alpha_mathrm{GB}} lesssim 11$ km.
Recently it has been proposed that the Gauss-Bonnet coupling parameter of Lovelock gravity may suitably be rescaled in order to admit physically viable models of celestial phenomena such that higher curvature effects are active in standard four dimen sions as opposed to the usual higher dimensions. We investigate the consequences of this modification in the context of stellar modelling. The evolution of perfect fluid distributions is governed by the pressure isotropy condition and through stipulation of one of the metric potentials complete models emerge from solutions of the master differential equation. New classes of exact solution with this approach have been reported. One particular model is analysed in detail and shown to comport with elementary physical requirements demanded of realistic compact stars suggesting that the modified theory is not inconsistent with observations.
We study the properties of compact objects in a particular 4D Horndeski theory originating from higher dimensional Einstein-Gauss-Bonnet gravity. Remarkably, an exact vacuum solution is known. This compact object differs from general relativity mostl y in the strong field regime. We discuss some properties of black holes in this framework and investigate in detail the properties of neutron stars, both static and in slow rotation. We find that for relatively modest deviations from general relativity, the secondary object in GW190814 is compatible with being a slowly-rotating neutron star, without resorting to very stiff or exotic equations of state. For larger deviations from general relativity, the equilibrium sequence of neutron stars matches asymptotically to the black hole limit, closing the mass gap between neutron stars and black holes of same radius, but the stability of equilibrium solutions has yet to be determined. In light of our results and of current observational constraints, we discuss specific constraints on the coupling constant that parametrizes deviations from general relativity in this theory.
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv ature-couplings the resulting scalarized black hole solutions are nonlinearly stable. For such small couplings, we show that an elliptic region forms inside these EdGB black hole spacetimes (prior to any curvature singularity), and give evidence that this region remains censored from asymptotic view. However, for coupling values superextremal relative to a given black hole mass, an elliptic region forms exterior to the horizon, implying the exterior Cauchy problem is ill-posed in this regime.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا