ﻻ يوجد ملخص باللغة العربية
We investigate the properties of relativistic stars made of dark energy. We model stellar structure assuming i) isotropic perfect fluid and ii) a dark energy inspired equation of state, the generalized equation of state of Chaplygin gas, as we will be calling it. The mass-to-radius profiles, the tidal Love numbers as well as the ten lowest radial oscillation modes are computed. Causality, stability and energy conditions are also discussed.
The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise a
The tidal Love numbers (TLNs) encode the deformability of a self-gravitating object immersed in a tidal environment and depend significantly both on the objects internal structure and on the dynamics of the gravitational field. An intriguing result i
For a variety of fully relativistic polytropic neutron star models we calculate the stars tidal Love number k2. Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n~0.5-1.0. The equilibrium
In this paper, we develop a new class of models for a compact star with anisotropic stresses inside the matter distribution. By assuming a linear equation of state for the anisotropic matter composition of the star we solve the Einstein field equatio
We study isotropic and slowly-rotating stars made of dark energy adopting the extended Chaplygin equation-of-state. We compute the moment of inertia as a function of the mass of the stars, both for rotating and non-rotating objects. The solution for