ﻻ يوجد ملخص باللغة العربية
Amorphous Tb$_{x}$Co$_{100-x}$ magnetic alloys exhibit a list of intriguing properties, such as perpendicular magnetic anisotropy, high magneto-optical activity and magnetization switching using ultrashort optical pulses. Varying the Tb:Co ratio in these alloys allows for tuning properties such as the saturation magnetic moment, coercive field and the performance of the light-induced magnetization switching. In this work, we investigate the magnetic, optical and magneto-optical properties of various Tb$_{x}$Co$_{100-x}$ thin film alloy compositions. We report on the effect the choice of different seeding layers has on the structural and magnetic properties of Tb$_{x}$Co$_{100-x}$ layers. We also demonstrate that for a range of alloys, deposited on fused silica substrates, with Tb content of 24-30 at.$%$, helicity dependent all-optical switching of magnetization can be achieved, albeit in a multi-shot framework. We explain this property to arise from the helicity-dependent laser induced magnetization on the Co sublattice due to the inverse Faraday effect. Our study provides an insight into material aspects for future potential hybrid magneto-plasmonic TbCo-based architectures.
Since the first experimental observation of all-optical switching phenomena, intensive research has been focused on finding suitable magnetic systems that can be integrated as storage elements within spintronic devices and whose magnetization can be
In recent years, there has been an intense interest in understanding the microscopic mechanism of thermally induced magnetization switching driven by a femtosecond laser pulse. Most of the effort has been dedicated to periodic crystalline structures
Ultrafast control of the magnetization in ps timescales by fs laser pulses offers an attractive avenue for applications such as fast magnetic devices for logic and memory. However, ultrafast helicity-independent all-optical switching (HI-AOS) of the
We report the structural, magnetic, and magnetocaloric properties of Co$_2$Cr$_{1-x}$Ti$_x$Al ($x=$ 0--0.5) Heusler alloys for spintronic and magnetic refrigerator applications. Room temperature X-ray diffraction and neutron diffraction patterns alon
All-optical switches are introduced which are based on deoxyribonucleic acid (DNA) in the form of electrospun fibers, where DNA is semi-intercalated with a push-pull, luminescent nonlinear pyrazoline derivative. Optical birefringence is found in the