ﻻ يوجد ملخص باللغة العربية
All-optical switches are introduced which are based on deoxyribonucleic acid (DNA) in the form of electrospun fibers, where DNA is semi-intercalated with a push-pull, luminescent nonlinear pyrazoline derivative. Optical birefringence is found in the organic nanofibers, with fully reversible switching controlled through continuous-wave laser irradiation. The photoinduced signal is remarkably large, with birefringence highlighted by optically-driven refractive index anisotropy approaching 0.001. Sub-millisecond characteristic switching times are found. Integrating dye-intercalated DNA complex systems in organic nanofibers, as convenient and efficient approach to template molecular organization and controlling it by external stimuli, might open new routes for realizing optical logic gates, reconfigurable photonic networks and sensors through physically-transient biopolymer components.
Since the first experimental observation of all-optical switching phenomena, intensive research has been focused on finding suitable magnetic systems that can be integrated as storage elements within spintronic devices and whose magnetization can be
Optically induced ultrafast switching of single photons is demonstrated by rotating the photon polarization via the Kerr effect in a commercially available single mode fiber. A switching efficiency of 97% is achieved with a $sim1.7$,ps switching time
Electro-optic modulators within Mach--Zehnder interferometers are a common construction for optical switches in integrated photonics. A challenge faced when operating at high switching speeds is that noise from the electronic drive signals will effec
All-optical switching (AOS) of magnetic domains by femtosecond laser pulses was first observed in the transition metal-rare earth (TM-RE) alloy GdFeCo1-5; this phenomenon demonstrated the potential for optical control of magnetism for the development
Networks inside current data centers comprise a hierarchy of power-hungry electronic packet switches interconnected via optical fibers and transceivers. As the scaling of such electrically-switched networks approaches a plateau, a power-efficient sol