ترغب بنشر مسار تعليمي؟ اضغط هنا

All-thermal switching of amorphous Gd-Fe alloys: analysis of structural properties and magnetization dynamics

89   0   0.0 ( 0 )
 نشر من قبل Manuel Pereiro
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, there has been an intense interest in understanding the microscopic mechanism of thermally induced magnetization switching driven by a femtosecond laser pulse. Most of the effort has been dedicated to periodic crystalline structures while the amorphous counterparts have been less studied. By using a multiscale approach, i.e. first-principles density functional theory combined with atomistic spin dynamics, we report here on the very intricate structural and magnetic nature of amorphous Gd-Fe alloys for a wide range of Gd and Fe atomic concentrations at the nanoscale level. Both structural and dynamical properties of Gd-Fe alloys reported in this work are in good agreement with previous experiments. We calculated the dynamic behavior of homogeneous and inhomogeneous amorphous Gd-Fe alloys and their response under the influence of a femtosecond laser pulse. In the homogeneous sample, the Fe sublattice switches its magnetization before the Gd one. However, the temporal sequence of the switching of the two sublattices is reversed in the inhomogeneous sample. We propose a possible explanation based on a mechanism driven by a combination of the Dzyaloshiskii-Moriya interaction and exchange frustration, modeled by an antiferromagnetic second-neighbour exchange interaction between Gd atoms in the Gd-rich region. We also report on the influence of laser fluence and damping effects in the all-thermal switching.



قيم البحث

اقرأ أيضاً

The dynamic response of dipole skyrmions in Fe/Gd multilayer films is investigated by ferromagnetic resonance measurements and compared to micromagnetic simulations. We detail thickness and temperature dependent studies of the observed modes as well as the effects of magnetic field history on the resonant spectra. Correlation between the modes and the magnetic phase maps constructed from real-space imaging and scattering patterns allows us to conclude the resonant modes arise from local topological features such as dipole skyrmions but does not depend on the collective response of a closed packed lattice of these chiral textures. Using, micromagnetic modeling, we are able to quantitatively reproduce our experimental observations which suggests the existence of localized spin-wave modes that are dependent on the helicity of the dipole skyrmion. We identify four localized spin wave excitations for the skyrmions that are excited under either in-plane or out-of-plane r.f. fields. Lastly we show that dipole skyrmions and non-chiral bubble domains exhibit qualitatively different localized spin wave modes.
Using photo-emission electron microscopy with X-ray magnetic circular dichroism as a contrast mechanism, new insights into the all-optical magnetization switching (AOS) phenomenon in GdFe based rare-earth transition metal ferrimagnetic alloys are pro vided. From a sequence of static images taken after single linearly polarized laser pulse excitation, the repeatability of AOS can be measured with a correlation coefficient. It is found that low coercivity enables thermally activated domain wall motion, limiting in turn the repeatability of the switching. Time-resolved measurement of the magnetization dynamics reveal that while AOS occurs below and above the magnetization compensation temperature $T_text{M}$, it is not observed in GdFe samples where $T_text{M}$ is absent. Finally, AOS is experimentally demonstrated against an applied magnetic field of up to 180 mT.
In this work we analyse the role of a thin Cr spacer between Fe and Gd layers on structure and magnetic properties of a [Fe(35A)/Cr(tCr)/Gd(50A)/Cr(tCr)]x12 superlattice. Samples without the Cr spacer (tCr=0) and with a thin tCr=4A are investigated u sing X-ray diffraction, polarized neutron and resonance X-ray magnetic reflectometry, SQUID magnetometery, magneto-optical Kerr effect and ferromagnetic resonance techniques. Magnetic properties are studied experimentally in a wide temperature range 4-300K and analysed theoretically using numerical simulation on the basis of the mean-field model. We show that a reasonable agreement with the experimental data can be obtained considering temperature dependence of the effective field parameter in gadolinium layers. The analysis of the experimental data shows that besides a strong reduction of the antiferromagnetic coupling between Fe and Gd, the introduction of Cr spacers into Fe/Gd superlattice leads to modification of both structural and magnetic characteristics of the ferromagnetic layers.
Ultrafast control of the magnetization in ps timescales by fs laser pulses offers an attractive avenue for applications such as fast magnetic devices for logic and memory. However, ultrafast helicity-independent all-optical switching (HI-AOS) of the magnetization has thus far only been observed in Gd-based, ferrimagnetic amorphous (textit{a}-) rare earth-transition metal (textit{a}-RE-TM) systems, and a comprehensive understanding of the reversal mechanism remains elusive. Here, we report HI-AOS in ferrimagnetic textit{a}-Gd$_{22-x}$Tb$_x$Co$_{78}$ thin films, from x = 0 to x = 18, and elucidate the role of Gd in HI-AOS in textit{a}-RE-TM alloys and multilayers. Increasing Tb content results in increasing perpendicular magnetic anisotropy and coercivity, without modifying magnetization density, and slower remagnetization rates and higher critical fluences for switching but still shows picosecond HI-AOS. Simulations of the atomistic spin dynamics based on the two-temperature model reproduce these results qualitatively and predict that the lower damping on the RE sublattice arising from the small spin-orbit coupling of Gd (with $L = 0$) is instrumental for the faster dynamics and lower critical fluences of the Gd-rich alloys. Annealing textit{a}-Gd$_{10}$Tb$_{12}$Co$_{78}$ leads to slower dynamics which we argue is due to an increase in damping. These simulations strongly indicate that acounting for element-specific damping is crucial in understanding HI-AOS phenomena. The results suggest that engineering the element specific damping of materials can open up new classes of materials that exhibit low-energy, ultrafast HI-AOS.
127 - Somnath Jana 2018
Element specific ultrafast demagnetization was studied in Fe$_{1-x}$Ni$_{x}$ alloys, covering the concentration range between $0.1<x<0.9$. For all compositions, we observe a delay in the onset of Ni demagnetization relative to the Fe demagnetization. We find that the delay is correlated to the Curie temperature and hence also the exchange interaction. The temporal evolution of demagnetization is fitted to a magnon diffusion model based on the presupposition of enhanced ultrafast magnon generation in the Fe sublattice. The spin wave stiffness extracted from this model correspond well to known experimental values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا