ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs inflation in Einstein-Cartan gravity

81   0   0.0 ( 0 )
 نشر من قبل Sebastian Zell
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study inflation driven by the Higgs field in the Einstein-Cartan formulation of gravity. In this theory, the presence of the Holst and Nieh-Yan terms with the Higgs field non-minimally coupled to them leads to three additional coupling constants. For a broad range of parameters, we find that inflation is both possible and consistent with observations. In most cases, the spectral index is given by $n_s=1-2/N_star$ (with $N_star$ the number of e-foldings) whereas the tensor-to-scalar ratio $r$ can vary between about $10^{-10}$ and $1$. Thus, there are scenarios of Higgs inflation in the Einstein-Cartan framework for which the detection of gravitational waves from inflation is possible in the near future. In certain limits, the known models of Higgs inflation in the metric and Palatini formulations of gravity are reproduced. Finally, we discuss the robustness of inflationary dynamics against quantum corrections due to the scalar and fermion fields.

قيم البحث

اقرأ أيضاً

It is well-known since the works of Utiyama and Kibble that the gravitational force can be obtained by gauging the Lorentz group, which puts gravity on the same footing as the Standard Model fields. The resulting theory -- Einstein-Cartan gravity -- inevitably contains a four-fermion interaction that originates from torsion associated with spin degrees of freedom. We show that this interaction leads to a novel universal mechanism for producing singlet fermions in the Early Universe. These fermions can play the role of dark matter particles. The mechanism is operative in a large range of dark matter particle masses: from a few keV up to $sim 10^8~$GeV. We discuss potential observational consequences of keV-scale dark matter produced this way, in particular for right-handed neutrinos. We conclude that a determination of the primordial dark matter momentum distribution might be able to shed light on the gravity-induced fermionic interactions.
We use the Wilsonian functional Renormalisation Group (RG) to study quantum corrections for the Higgs inflationary action including the effect of gravitons, and analyse the leading-order quantum gravitational corrections to the Higgs quartic coupling , as well as its non-minimal coupling to gravity and Newtons constant, at the inflationary regime and beyond. We explain how within this framework the effect of Higgs and graviton loops can be sufficiently suppressed during inflation, and we also place a bound on the corresponding value of the infrared RG cut-off scale during inflation. Finally, we briefly discuss the potential embedding of the model within the scenario of Asymptotic Safety, while all main equations are explicitly presented.
We study quantum effects in Higgs inflation in the Palatini formulation of gravity, in which the metric and connection are treated as independent variables. We exploit the fact that the cutoff, above which perturbation theory breaks down, is higher t han the scale of inflation. Unless new physics above the cutoff leads to unnaturally large corrections, we can directly connect low-energy physics and inflation. On the one hand, the lower bound on the top Yukawa coupling due to collider experiments leads to an upper bound on the non-minimal coupling of the Higgs field to gravity: $xi lesssim 10^8$. On the other hand, the Higgs potential can only support successful inflation if $xi gtrsim 10^6$. This leads to a fairly strict upper bound on the top Yukawa coupling of $0.925$ (defined in the $overline{text{MS}}$-scheme at the energy scale $173.2,text{GeV}$) and constrains the inflationary prediction for the tensor-to-scalar ratio. Additionally, we compare our findings to metric Higgs inflation.
In this work, we revisit the non-minimally coupled Higgs Inflation scenario and investigate its observational viability in light of the current Cosmic Microwave Background, Baryon Acoustic Oscillation and type Ia Supernovae data. We explore the effec ts of the Coleman-Weinberg approximation to the Higgs potential in the primordial universe, connecting the predictions for the Lagrangian parameters at inflationary scales to the electroweak observables through Renormalization Group methods at two-loop order. As the main result, we find that observations on the electroweak scale are in disagreement with the constraints obtained from the cosmological data sets used in the analysis. Specifically, an $approx 8sigma$-discrepancy between the inflationary parameters and the electroweak value of the top quark mass is found, which suggests that a significant deviation from the scenario analysed is required by the cosmological data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا