ترغب بنشر مسار تعليمي؟ اضغط هنا

Assessing the Adversarial Robustness of Monte Carlo and Distillation Methods for Deep Bayesian Neural Network Classification

180   0   0.0 ( 0 )
 نشر من قبل Satya Narayan Shukla
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we consider the problem of assessing the adversarial robustness of deep neural network models under both Markov chain Monte Carlo (MCMC) and Bayesian Dark Knowledge (BDK) inference approximations. We characterize the robustness of each method to two types of adversarial attacks: the fast gradient sign method (FGSM) and projected gradient descent (PGD). We show that full MCMC-based inference has excellent robustness, significantly outperforming standard point estimation-based learning. On the other hand, BDK provides marginal improvements. As an additional contribution, we present a storage-efficient approach to computing adversarial examples for large Monte Carlo ensembles using both the FGSM and PGD attacks.



قيم البحث

اقرأ أيضاً

Bayesian neural networks (BNNs) allow us to reason about uncertainty in a principled way. Stochastic Gradient Langevin Dynamics (SGLD) enables efficient BNN learning by drawing samples from the BNN posterior using mini-batches. However, SGLD and its extensions require storage of many copies of the model parameters, a potentially prohibitive cost, especially for large neural networks. We propose a framework, Adversarial Posterior Distillation, to distill the SGLD samples using a Generative Adversarial Network (GAN). At test-time, samples are generated by the GAN. We show that this distillation framework incurs no loss in performance on recent BNN applications including anomaly detection, active learning, and defense against adversarial attacks. By construction, our framework not only distills the Bayesian predictive distribution, but the posterior itself. This allows one to compute quantities such as the approximate model variance, which is useful in downstream tasks. To our knowledge, these are the first results applying MCMC-based BNNs to the aforementioned downstream applications.
In this paper, we present a general framework for distilling expectations with respect to the Bayesian posterior distribution of a deep neural network classifier, extending prior work on the Bayesian Dark Knowledge framework. The proposed framework t akes as input teacher and student model architectures and a general posterior expectation of interest. The distillation method performs an online compression of the selected posterior expectation using iteratively generated Monte Carlo samples. We focus on the posterior predictive distribution and expected entropy as distillation targets. We investigate several aspects of this framework including the impact of uncertainty and the choice of student model architecture. We study methods for student model architecture search from a speed-storage-accuracy perspective and evaluate down-stream tasks leveraging entropy distillation including uncertainty ranking and out-of-distribution detection.
Recent works have empirically shown that there exist adversarial examples that can be hidden from neural network interpretability (namely, making network interpretation maps visually similar), or interpretability is itself susceptible to adversarial attacks. In this paper, we theoretically show that with a proper measurement of interpretation, it is actually difficult to prevent prediction-evasion adversarial attacks from causing interpretation discrepancy, as confirmed by experiments on MNIST, CIFAR-10 and Restricted ImageNet. Spurred by that, we develop an interpretability-aware defensive scheme built only on promoting robust interpretation (without the need for resorting to adversarial loss minimization). We show that our defense achieves both robust classification and robust interpretation, outperforming state-of-the-art adversarial training methods against attacks of large perturbation in particular.
130 - Yikuan Li , Yajie Zhu 2019
Deep Bayesian neural network has aroused a great attention in recent years since it combines the benefits of deep neural network and probability theory. Because of this, the network can make predictions and quantify the uncertainty of the predictions at the same time, which is important in many life-threatening areas. However, most of the recent researches are mainly focusing on making the Bayesian neural network easier to train, and proposing methods to estimate the uncertainty. I notice there are very few works that properly discuss the ways to measure the performance of the Bayesian neural network. Although accuracy and average uncertainty are commonly used for now, they are too general to provide any insight information about the model. In this paper, we would like to introduce more specific criteria and propose several metrics to measure the model performance from different perspectives, which include model calibration measurement, data rejection ability and uncertainty divergence for samples from the same and different distributions.
Bayesian Dark Knowledge is a method for compressing the posterior predictive distribution of a neural network model into a more compact form. Specifically, the method attempts to compress a Monte Carlo approximation to the parameter posterior into a single network representing the posterior predictive distribution. Further, the authors show that this approach is successful in the classification setting using a student network whose architecture matches that of a single network in the teacher ensemble. In this work, we examine the robustness of Bayesian Dark Knowledge to higher levels of posterior uncertainty. We show that using a student network that matches the teacher architecture may fail to yield acceptable performance. We study an approach to close the resulting performance gap by increasing student model capacity.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا