ترغب بنشر مسار تعليمي؟ اضغط هنا

Proper Network Interpretability Helps Adversarial Robustness in Classification

113   0   0.0 ( 0 )
 نشر من قبل Akhilan Boopathy
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent works have empirically shown that there exist adversarial examples that can be hidden from neural network interpretability (namely, making network interpretation maps visually similar), or interpretability is itself susceptible to adversarial attacks. In this paper, we theoretically show that with a proper measurement of interpretation, it is actually difficult to prevent prediction-evasion adversarial attacks from causing interpretation discrepancy, as confirmed by experiments on MNIST, CIFAR-10 and Restricted ImageNet. Spurred by that, we develop an interpretability-aware defensive scheme built only on promoting robust interpretation (without the need for resorting to adversarial loss minimization). We show that our defense achieves both robust classification and robust interpretation, outperforming state-of-the-art adversarial training methods against attacks of large perturbation in particular.

قيم البحث

اقرأ أيضاً

In this paper, we consider the problem of assessing the adversarial robustness of deep neural network models under both Markov chain Monte Carlo (MCMC) and Bayesian Dark Knowledge (BDK) inference approximations. We characterize the robustness of each method to two types of adversarial attacks: the fast gradient sign method (FGSM) and projected gradient descent (PGD). We show that full MCMC-based inference has excellent robustness, significantly outperforming standard point estimation-based learning. On the other hand, BDK provides marginal improvements. As an additional contribution, we present a storage-efficient approach to computing adversarial examples for large Monte Carlo ensembles using both the FGSM and PGD attacks.
Recent research has recognized interpretability and robustness as essential properties of trustworthy classification. Curiously, a connection between robustness and interpretability was empirically observed, but the theoretical reasoning behind it re mained elusive. In this paper, we rigorously investigate this connection. Specifically, we focus on interpretation using decision trees and robustness to $l_{infty}$-perturbation. Previous works defined the notion of $r$-separation as a sufficient condition for robustness. We prove upper and lower bounds on the tree size in case the data is $r$-separated. We then show that a tighter bound on the size is possible when the data is linearly separated. We provide the first algorithm with provable guarantees both on robustness, interpretability, and accuracy in the context of decision trees. Experiments confirm that our algorithm yields classifiers that are both interpretable and robust and have high accuracy. The code for the experiments is available at https://github.com/yangarbiter/interpretable-robust-trees .
Representing entities and relations in an embedding space is a well-studied approach for machine learning on relational data. Existing approaches, however, primarily focus on improving accuracy and overlook other aspects such as robustness and interp retability. In this paper, we propose adversarial modifications for link prediction models: identifying the fact to add into or remove from the knowledge graph that changes the prediction for a target fact after the model is retrained. Using these single modifications of the graph, we identify the most influential fact for a predicted link and evaluate the sensitivity of the model to the addition of fake facts. We introduce an efficient approach to estimate the effect of such modifications by approximating the change in the embeddings when the knowledge graph changes. To avoid the combinatorial search over all possible facts, we train a network to decode embeddings to their corresponding graph components, allowing the use of gradient-based optimization to identify the adversarial modification. We use these techniques to evaluate the robustness of link prediction models (by measuring sensitivity to additional facts), study interpretability through the facts most responsible for predictions (by identifying the most influential neighbors), and detect incorrect facts in the knowledge base.
In this paper, we study counterfactual fairness in text classification, which asks the question: How would the prediction change if the sensitive attribute referenced in the example were different? Toxicity classifiers demonstrate a counterfactual fa irness issue by predicting that Some people are gay is toxic while Some people are straight is nontoxic. We offer a metric, counterfactual token fairness (CTF), for measuring this particular form of fairness in text classifiers, and describe its relationship with group fairness. Further, we offer three approaches, blindness, counterfactual augmentation, and counterfactual logit pairing (CLP), for optimizing counterfactual token fairness during training, bridging the robustness and fairness literature. Empirically, we find that blindness and CLP address counterfactual token fairness. The methods do not harm classifier performance, and have varying tradeoffs with group fairness. These approaches, both for measurement and optimization, provide a new path forward for addressing fairness concerns in text classification.
Several recent results provide theoretical insights into the phenomena of adversarial examples. Existing results, however, are often limited due to a gap between the simplicity of the models studied and the complexity of those deployed in practice. I n this work, we strike a better balance by considering a model that involves learning a representation while at the same time giving a precise generalization bound and a robustness certificate. We focus on the hypothesis class obtained by combining a sparsity-promoting encoder coupled with a linear classifier, and show an interesting interplay between the expressivity and stability of the (supervised) representation map and a notion of margin in the feature space. We bound the robust risk (to $ell_2$-bounded perturbations) of hypotheses parameterized by dictionaries that achieve a mild encoder gap on training data. Furthermore, we provide a robustness certificate for end-to-end classification. We demonstrate the applicability of our analysis by computing certified accuracy on real data, and compare with other alternatives for certified robustness.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا