ترغب بنشر مسار تعليمي؟ اضغط هنا

Additional Calibration of the Ultra-Violet Imaging Telescope on board AstroSat

228   0   0.0 ( 0 )
 نشر من قبل C. S. Stalin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results of the initial calibration of the Ultra-Violet Imaging Telescope (UVIT) were reported earlier by Tandon et al. (2017). The results reported earlier were based on the ground calibration as well as the first observations in orbit. Some additional data from the ground calibration and data from more in-orbit observations have been used to improve the results. In particular, extensive new data from in-orbit observations have been used to obtain (a) new photometric calibration which includes (i) zero-points (ii) flat fields (iii) saturation, (b) sensitivity variations (c) spectral calibration for the near Ultra Violet (NUV; 2000 - 3000 Angstroms) and far Ultra-Violet (FUV; 1300 - 1800 Angstroms) gratings, (d) point spread function and (e) astrometric calibration which included distortion. Data acquired over the last three years show continued good performance of UVIT with no reduction in sensitivity in both the UV channels.



قيم البحث

اقرأ أيضاً

151 - Amit Kumar 2012
Ultra Violet Imaging Telescope on ASTROSAT Satellite mission is a suite of Far Ultra Violet (FUV 130 to 180 nm), Near Ultra Violet (NUV 200 to 300 nm) and Visible band (VIS 320 to 550nm) imagers. ASTROSAT is the first multi wavelength mission of INDI A. UVIT will image the selected regions of the sky simultaneously in three channels and observe young stars, galaxies, bright UV Sources. FOV in each of the 3 channels is about 28 arc-minute. Targeted angular resolution in the resulting UV images is better than 1.8 arc-second (better than 2.0 arc-second for the visible channel). Two identical co-aligned telescopes (T1, T2) of Ritchey-Chretien configuration (Primary mirror of 375 mm diameter) collect celestial radiation and feed to the detector system via a selectable filter on a filter wheel mechanism; gratings are available in filter wheels of FUV and NUV channels for slit-less low resolution spectroscopy. The detector system for each of the 3 channels is generically identical. One of the telescopes images in the FUV channel, while the other images in NUV and VIS channels. Images from VIS channel are also used for measuring drift for reconstruction of images on ground through shift and add algorithm, and to reconstruct absolute aspect of the images. Adequate baffling has been provided for reducing scattered background from the Sun, earth albedo and other bright objects. One time open-able mechanical cover on each telescope also works as a Sun-shield after deployment. We are presenting here the overall (mechanical, optical and electrical) design of the payload.
The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375mm telescopes: one for the far-ultraviolet (FUV) channel (1300--1800AA), and the other for the near-ultra violet (NUV) channel (2000--3000AA) and the visible (VIS) channel (3200--5500AA). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.8 arcsec, along with provision for slit-less spectroscopy in the NUV and FUV channels.The results of in-orbit calibrations of UVIT are presented in this paper.
We present early results from the Ultra-Violet Imaging Telescope (UVIT) onboard the ASTROSAT observatory. We report the discovery of a hot companion associated with one of the blue straggler stars (BSSs) in the old open cluster, NGC188. Using fluxes measured in four filters in UVITs Far-UV (FUV) channel, and two filters in the near-UV (NUV) channel, we have constructed the spectral energy distribution (SED) of the star WOCS-5885, after combining with flux measurements from GALEX, UIT, UVOT, SPITZER, WISE and several ground-based facilities. The resulting SED spans a wavelength range of 0.15~${mu}$m to 7.8~${mu}$m. This object is found to be one of the brightest FUV sources in the cluster. An analysis of the SED reveals the presence of two components. The cooler component is found to have a temperature of 6,000$pm$150~K, confirming that it is a BSS. Assuming it to be a main-sequence star, we estimate its mass to be $sim$ 1.1 - 1.2M$_odot$. The hotter component, with an estimated temperature of 17,000$pm$500~K, has a radius of $sim$ 0.6R$_odot$ and L $sim$ 30L$_odot$. Bigger and more luminous than a white dwarf, yet cooler than a sub-dwarf, we speculate that it is a post-AGB/HB star that has recently transferred its mass to the BSS, which is known to be a rapid rotator. This binary system, which is the first BSS with a post-AGB/HB companion identified in an open cluster, is an ideal laboratory to study the process of BSS formation via mass transfer.
AstroSat is Indias first space-based astronomical observatory, launched on September 28, 2015. One of the payloads aboard AstroSat is the Cadmium Zinc Telluride Imager (CZTI), operating at hard X-rays. CZTI employs a two-dimensional coded aperture ma sk for the purpose of imaging. In this paper, we discuss various image reconstruction algorithms adopted for the test and calibration of the imaging capability of CZTI and present results from CZTI on-ground as well as in-orbit image calibration.
Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high speed wind from WC8 central star (CS) with the nebula. It shows strong Civ 1550 {AA} emission that cannot be explained by thermal processes alone . We present here the first map of this nebula in C IV emission, using broad band filters on the UVIT. Aims. To map the hot C IV emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions, in order to study the shock interaction with the nebula and the ISM. This also illustrates the potential of UVIT for nebular studies. Methods. Morphological study of images of the nebula obtained at an angular resolution of about 1.3 in four UVIT filter bands that include C IV 1550 {AA} and C II] 2326 {AA} lines and UV continuum. Comparisons with X-ray, optical, and IR images from literature. Results. The C II] 2326 {AA} images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extant as that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint FUV halo in FUV Filter with {lambda}eff of 1608 {AA}. The UV halo is not present in any other UV filter. FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, FUV halo trails predominantly towards south-east side of the nebular core, opposite to the CSs proper motion direction. Conclusions. Morphological similarity of C IV 1550 {AA} and X-ray emission in the core suggests that it results mostly from interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the existence of H2 molecules extensively in the regions even beyond the optical and IR halos.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا