ترغب بنشر مسار تعليمي؟ اضغط هنا

In-orbit Calibrations of the Ultra-Violet Imaging Telescope

335   0   0.0 ( 0 )
 نشر من قبل Annapurni Subramaniam
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Ultra-Violet Imaging Telescope (UVIT) is one of the payloads in ASTROSAT, the first Indian Space Observatory. The UVIT instrument has two 375mm telescopes: one for the far-ultraviolet (FUV) channel (1300--1800AA), and the other for the near-ultraviolet (NUV) channel (2000--3000AA) and the visible (VIS) channel (3200--5500AA). UVIT is primarily designed for simultaneous imaging in the two ultraviolet channels with spatial resolution better than 1.8 arcsec, along with provision for slit-less spectroscopy in the NUV and FUV channels.The results of in-orbit calibrations of UVIT are presented in this paper.



قيم البحث

اقرأ أيضاً

151 - Amit Kumar 2012
Ultra Violet Imaging Telescope on ASTROSAT Satellite mission is a suite of Far Ultra Violet (FUV 130 to 180 nm), Near Ultra Violet (NUV 200 to 300 nm) and Visible band (VIS 320 to 550nm) imagers. ASTROSAT is the first multi wavelength mission of INDI A. UVIT will image the selected regions of the sky simultaneously in three channels and observe young stars, galaxies, bright UV Sources. FOV in each of the 3 channels is about 28 arc-minute. Targeted angular resolution in the resulting UV images is better than 1.8 arc-second (better than 2.0 arc-second for the visible channel). Two identical co-aligned telescopes (T1, T2) of Ritchey-Chretien configuration (Primary mirror of 375 mm diameter) collect celestial radiation and feed to the detector system via a selectable filter on a filter wheel mechanism; gratings are available in filter wheels of FUV and NUV channels for slit-less low resolution spectroscopy. The detector system for each of the 3 channels is generically identical. One of the telescopes images in the FUV channel, while the other images in NUV and VIS channels. Images from VIS channel are also used for measuring drift for reconstruction of images on ground through shift and add algorithm, and to reconstruct absolute aspect of the images. Adequate baffling has been provided for reducing scattered background from the Sun, earth albedo and other bright objects. One time open-able mechanical cover on each telescope also works as a Sun-shield after deployment. We are presenting here the overall (mechanical, optical and electrical) design of the payload.
Results of the initial calibration of the Ultra-Violet Imaging Telescope (UVIT) were reported earlier by Tandon et al. (2017). The results reported earlier were based on the ground calibration as well as the first observations in orbit. Some addition al data from the ground calibration and data from more in-orbit observations have been used to improve the results. In particular, extensive new data from in-orbit observations have been used to obtain (a) new photometric calibration which includes (i) zero-points (ii) flat fields (iii) saturation, (b) sensitivity variations (c) spectral calibration for the near Ultra Violet (NUV; 2000 - 3000 Angstroms) and far Ultra-Violet (FUV; 1300 - 1800 Angstroms) gratings, (d) point spread function and (e) astrometric calibration which included distortion. Data acquired over the last three years show continued good performance of UVIT with no reduction in sensitivity in both the UV channels.
Context. NGC 40 is a planetary nebula with diffuse X-ray emission, suggesting an interaction of the high speed wind from WC8 central star (CS) with the nebula. It shows strong Civ 1550 {AA} emission that cannot be explained by thermal processes alone . We present here the first map of this nebula in C IV emission, using broad band filters on the UVIT. Aims. To map the hot C IV emitting gas and its correspondence with soft X-ray (0.3-8 keV) emitting regions, in order to study the shock interaction with the nebula and the ISM. This also illustrates the potential of UVIT for nebular studies. Methods. Morphological study of images of the nebula obtained at an angular resolution of about 1.3 in four UVIT filter bands that include C IV 1550 {AA} and C II] 2326 {AA} lines and UV continuum. Comparisons with X-ray, optical, and IR images from literature. Results. The C II] 2326 {AA} images show the core of the nebula with two lobes on either side of CS similar to [N II]. The C IV emission in the core shows similar morphology and extant as that of diffuse X-ray emission concentrated in nebular condensations. A surprising UVIT discovery is the presence of a large faint FUV halo in FUV Filter with {lambda}eff of 1608 {AA}. The UV halo is not present in any other UV filter. FUV halo is most likely due to UV fluorescence emission from the Lyman bands of H2 molecules. Unlike the optical and IR halo, FUV halo trails predominantly towards south-east side of the nebular core, opposite to the CSs proper motion direction. Conclusions. Morphological similarity of C IV 1550 {AA} and X-ray emission in the core suggests that it results mostly from interaction of strong CS wind with the nebula. The FUV halo in NGC 40 highlights the existence of H2 molecules extensively in the regions even beyond the optical and IR halos.
The UV/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (approximately 1 minute) UV and optical photons from the afterglow of gamma-ray bursts in the 170-600 nm ba nd as well as long term observations of these afterglows. This is accomplished through the use of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey-Chretien design with micro-channel plate intensified charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument.
We present the UV photometry of the globular cluster NGC 1851 using images acquired with the Ultra-violet Imaging Telescope (UVIT) onboard the ASTROSAT satellite. PSF-fitting photometric data derived from images in two far-UV (FUV) filters and one ne ar-UV (NUV) filter are used to construct color-magnitude diagrams (CMD), in combination with HST and ground-based optical photometry. In the FUV, we detect only the bluest part of the cluster horizontal branch (HB); in the NUV, we detect the full extent of the HB, including the red HB, blue HB and a small number of RR Lyrae stars. UV variability was detected in 18 RR Lyrae stars, and 3 new variables were also detected in the central region. The UV/optical CMDs are then compared with isochrones of different age and metallicity (generated using Padova and BaSTI models) and synthetic HB (using helium enhanced $Y^2$ models). We are able to identify two populations among the HB stars, which are found to have either an age range of 10-12~Gyr, or a range in Y$_{ini}$ of 0.23 - 0.28, for a metallicity of [Fe/H] =$-$1.2 to $-$1.3. These estimations from the UV CMDs are consistent with those from optical studies. The almost complete sample of the HB stars tend to show a marginal difference in spatial/azimuthal distribution among the blue and red HB stars. This study thus show cases the capability of UVIT, with its excellent resolution and large field of view, to study the hot stellar population in Galactic globular clusters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا