ﻻ يوجد ملخص باللغة العربية
AstroSat is Indias first space-based astronomical observatory, launched on September 28, 2015. One of the payloads aboard AstroSat is the Cadmium Zinc Telluride Imager (CZTI), operating at hard X-rays. CZTI employs a two-dimensional coded aperture mask for the purpose of imaging. In this paper, we discuss various image reconstruction algorithms adopted for the test and calibration of the imaging capability of CZTI and present results from CZTI on-ground as well as in-orbit image calibration.
The AstroSat satellite is designed to make multi-waveband observations of astronomical sources and the Cadmium Zinc Telluride Imager (CZTI) instrument of AstroSat covers the hard X-ray band. CZTI has a large area position sensitive hard X-ray detecto
The High Resolution Energetic X-Ray Imager (HREXI) CZT detector development program at Harvard is aimed at developing tiled arrays of finely pixelated CZT detectors for use in wide-field coded aperture 3-200 keV X-ray telescopes. A pixel size of $sim
We are currently developing Cadmium Zinc Telluride (CZT) detectors for a next-generation space-borne hard X-ray telescope which can follow up on the highly successful NuSTAR (Nuclear Spectroscopic Telescope Array) mission. Since the launch of NuSTAR
The radio as well as the high energy emission mechanism in pulsars is yet not understood properly. A multi-wavelength study is likely to help in better understanding of such processes. The first Indian space-based observatory, ASTROSAT, has five inst
Cadmium-Zinc-Telluride Imager (CZTI) is one of the five payloads on-board recently launched Indian astronomy satellite AstroSat. CZTI is primarily designed for simultaneous hard X-ray imaging and spectroscopy of celestial X-ray sources. It employs th