ترغب بنشر مسار تعليمي؟ اضغط هنا

E_6 inspired composite Higgs model and baryon asymmetry generation

81   0   0.0 ( 0 )
 نشر من قبل Roman Nevzorov
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The breakdown of SU(6) global symmetry down to its SU(5) subgroup near the scale f > 10 TeV in the strongly interacting sector within the E_6 inspired composite Higgs model (E6CHM) gives rise to a set of pseudo-Nambu-Goldstone bosons (pNGBs) that involves one Standard Model (SM) singlet scalar, a SM-like Higgs doublet and an SU(3)_C triplet of scalar fields, $T$. We argue that the baryon number violation in the E6CHM can induce the observed matter-antimatter asymmetry if CP is violated. The coloured triplet of scalar fields with mass in the few TeV range plays a key role in this process and may lead to a distinct new physics signal that can be detected at the LHC in the near future.

قيم البحث

اقرأ أيضاً

To explain the baryon asymmetry of the Universe, we extend the Standard Model (SM) with two additional Higgs doublets with small vacuum expectation values. The additional Higgs fields interact with SM fermions through complex Yukawa couplings, leadin g to new sources of CP violation. We propose a simple flavor model with $mathcal{O}(1)$ or less Yukawa couplings for quarks and charged leptons, consistent with current flavor constraints. To generate neutrino masses and the baryon asymmetry, right-handed neutrinos in the $sim 0.1-10$ TeV range couple to the Higgs Troika. The new Higgs doublet masses could be near the TeV scale, allowing for asymmetric decays into Standard Model lepton doublets and right-handed neutrinos. The asymmetry in lepton doublets is then processed into a baryon asymmetry, similar to leptogenesis. Since the masses of the new fields are near the TeV scale, there is potentially a rich high energy collider phenomenology, including observable deviations in the 125 GeV Higgs decay into muons and taus, as well as detectable low energy signals such as the electron EDM or $murightarrow egamma$. Hence, this is in principle a testable model for generation of baryon asymmetry, similar in that respect to electroweak baryogenesis.
In the E6 inspired composite Higgs model (E6CHM) the strongly interacting sector possesses an SU(6)times U(1)_Btimes U(1)_L global symmetry. Near scale fgtrsim 10 TeV the SU(6) symmetry is broken down to its SU(5) subgroup, that involves the standard model (SM) gauge group. This breakdown of SU(6) leads to a set of pseudo--Nambu--Goldstone bosons (pNGBs) including a SM--like Higgs and a SM singlet pseudoscalar A. Because of the interactions between A and exotic fermions, which ensure the approximate unification of the SM gauge couplings and anomaly cancellation in this model, the couplings of the pseudoscalar A to gauge bosons get induced. As a result, the SM singlet pNGB state A with mass around 750 GeV may give rise to sufficiently large cross section of ppto gammagamma that can be identified with the recently observed diphoton excess.
We explore the low energy implications of an F-theory inspired $E_6$ model whose breaking yields, in addition to the MSSM gauge symmetry, a $Z$ gauge boson associated with a $U(1)$ symmetry broken at the TeV scale. The zero mode spectrum of the effec tive low energy theory is derived from the decomposition of the $27$ and $overline{27}$ representations of $E_6$ and we parametrise their multiplicities in terms of a minimum number of flux parameters. We perform a two-loop renormalisation group analysis of the gauge and Yukawa couplings of the effective theory model and estimate lower bounds on the new vectorlike particles predicted in the model. We compute the third generation Yukawa couplings in an F-theory context assuming an $E_8$ point of enhancement and express our results in terms of the local flux densities associated with the gauge symmetry breaking. We find that their values are compatible with the ones computed by the renormalisation group equations, and we identify points in the parameter space of the flux densities where the $t-b-tau$ Yukawa couplings unify.
57 - P. Athron 2015
We explore the relic density of dark matter and the particle spectrum within a constrained version of an $E_6$ inspired SUSY model with an extra $U(1)_N$ gauge symmetry. In this model a single exact custodial symmetry forbids tree-level flavor-changi ng transitions and the most dangerous baryon and lepton number violating operators. We present a set of benchmark points showing scenarios that have a SM-like Higgs mass of 125 GeV and sparticle masses above the LHC limits. They lead to striking new physics signatures which may be observed during run II of the LHC and can distinguish this model from the simplest SUSY extensions of the SM. At the same time these benchmark scenarios are consistent with the measured dark matter abundance and necessarily lead to large dark matter direct detection cross sections close to current limits and observable soon at the XENON1T experiment.
88 - P. Athron 2016
We investigate dark matter in a constrained $E_6$ inspired supersymmetric model with an exact custodial symmetry and compare with the CMSSM. The breakdown of $E_6$ leads to an additional $U(1)_N$ symmetry and a discrete matter parity. The custodial a nd matter symmetries imply there are two stable dark matter candidates, though one may be extremely light and contribute negligibly to the relic density. We demonstrate that a predominantly Higgsino, or mixed bino-Higgsino, neutralino can account for all of the relic abundance of dark matter, while fitting a 125 GeV SM-like Higgs and evading LHC limits on new states. However we show that the recent LUX 2016 limit on direct detection places severe constraints on the mixed bino-Higgsino scenarios that explain all of the dark matter. Nonetheless we still reveal interesting scenarios where the gluino, neutralino and chargino are light and discoverable at the LHC, but the full relic abundance is not accounted for. At the same time we also show that there is a huge volume of parameter space, with a predominantly Higgsino dark matter candidate that explains all the relic abundance, that will be discoverable with XENON1T. Finally we demonstrate that for the $E_6$ inspired model the exotic leptoquarks could still be light and within range of future LHC searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا