ﻻ يوجد ملخص باللغة العربية
To explain the baryon asymmetry of the Universe, we extend the Standard Model (SM) with two additional Higgs doublets with small vacuum expectation values. The additional Higgs fields interact with SM fermions through complex Yukawa couplings, leading to new sources of CP violation. We propose a simple flavor model with $mathcal{O}(1)$ or less Yukawa couplings for quarks and charged leptons, consistent with current flavor constraints. To generate neutrino masses and the baryon asymmetry, right-handed neutrinos in the $sim 0.1-10$ TeV range couple to the Higgs Troika. The new Higgs doublet masses could be near the TeV scale, allowing for asymmetric decays into Standard Model lepton doublets and right-handed neutrinos. The asymmetry in lepton doublets is then processed into a baryon asymmetry, similar to leptogenesis. Since the masses of the new fields are near the TeV scale, there is potentially a rich high energy collider phenomenology, including observable deviations in the 125 GeV Higgs decay into muons and taus, as well as detectable low energy signals such as the electron EDM or $murightarrow egamma$. Hence, this is in principle a testable model for generation of baryon asymmetry, similar in that respect to electroweak baryogenesis.
A modest extension of the Standard Model by two additional Higgs doublets - the Higgs Troika Model - can provide a well-motivated scenario for successful baryogenesis if neutrinos are Dirac fermions. Adapting the Spontaneous Flavor Violation framewor
The breakdown of SU(6) global symmetry down to its SU(5) subgroup near the scale f > 10 TeV in the strongly interacting sector within the E_6 inspired composite Higgs model (E6CHM) gives rise to a set of pseudo-Nambu-Goldstone bosons (pNGBs) that inv
We have refined our previously suggested scenario of generation of the cosmological baryon asymmetry through an asymmetric capture of baryons and antibaryons by primordial block hole arXiv:2009.04361. It is found that in the limit of weak interaction
In the E6 inspired composite Higgs model (E6CHM) the strongly interacting sector possesses an SU(6) global symmetry which is expected to be broken down to its SU(5) subgroup at the scale f > 10 TeV. This breakdown results in a set of pseudo-Nambu-Gol
We propose a new mechanism where asymmetric dark matter (ADM) and the baryon asymmetry are both generated in the same decay chain of a metastable weakly interacting massive particle (WIMP) after its thermal freeze-out. Dark matter and baryons are con