ﻻ يوجد ملخص باللغة العربية
In standard lasers, light amplification requires population inversion between an upper and a lower state to break the reciprocity between absorption and stimulated emission. However, in a medium prepared in a specific superposition state, quantum interference may fully suppress absorption while leaving stimulated emission intact, opening the possibility of lasing without inversion. Here we show that lasing without inversion arises naturally during propagation of intense femtosecond laser pulses in air. It is triggered by the combination of molecular ionization and molecular alignment, both unavoidable in intense light fields. The effect could enable inversionless amplification of broadband radiation in many molecular gases, opening unusual opportunities for remote sensing.
We study the photon generation in a transmission line oscillator coupled to a driven qubit in the presence of a dissipative electromagnetic environment. It has been demonstrated previously that a population inversion in the qubit may lead to a lasing
We simulate the pump-probe experiments of lasing in molecular nitrogen ions with particular interest on the effects of rotational wave-packet dynamics. Our computations demonstrate that the coherent preparation of rotational wave packets in N$_2^+$ b
We propose a two-magnet design of a drift region for a free-electron laser without inversion (FELWI). By performing direct calculations of the phase shifts for electrons passing the drift region, we prove that the small-signal gain integrated over th
We stabilize a chosen radiofrequency beat note between two optical fields derived from the same mode-locked laser pulse train, in order to coherently manipulate quantum information. This scheme does not require access or active stabilization of the l
The field of attosecond science was first enabled by nonlinear compression of intense laser pulses to a duration below two optical cycles. Twenty years later, creating such short pulses still requires state-of-the-art few-cycle laser amplifiers to mo