ﻻ يوجد ملخص باللغة العربية
We stabilize a chosen radiofrequency beat note between two optical fields derived from the same mode-locked laser pulse train, in order to coherently manipulate quantum information. This scheme does not require access or active stabilization of the laser repetition rate. We implement and characterize this external lock, in the context of two-photon stimulated Raman transitions between the hyperfine ground states of trapped 171-Yb+ quantum bits.
Quantum-mechanical principles can be used to process information (QIP). In one approach, linear arrays of trapped, laser cooled ion qubits (two-level quantum systems) are confined in segmented multi-zone electrode structures. The ion trap approach to
We present an ion-lattice quantum processor based on a two-dimensional arrangement of linear surface traps. Our design features a tunable coupling between ions in adjacent lattice sites and a configurable ion-lattice connectivity, allowing one, e.g.,
We review methods for coherently controlling Rydberg quantum states of atomic ensembles using Adiabatic Rapid Passage and Stimulated Raman Adiabatic Passage. These methods are commonly used for population inversion in simple two-level and three-level
Photonic processors are pivotal for both quantum and classical information processing tasks using light. In particular, linear optical quantum information processing requires both largescale and low-loss programmable photonic processors. In this pape
We report results of numerical simulations on the multiple soliton generation and soliton energy quantization in a soliton fiber ring laser passively mode-locked by using the nonlinear polarization rotation technique. We found numerically that the fo