ﻻ يوجد ملخص باللغة العربية
Magnetic skyrmions are localized swirls of magnetization with a non-trivial topological winding number. This winding increases their robustness to superparamagnetism and gives rise to a myriad of novel dynamical properties, making them attractive as next-generation information carriers. Recently the equation of motion for a skyrmion was derived using the approach pioneered by Thiele, allowing for macroscopic skyrmion systems to be modeled efficiently. This powerful technique suffers from the prerequisite that one must have a priori knowledge of the functional form of the interaction between a skyrmion and all other magnetic structures in its environment. Here we attempt to alleviate this problem by providing a simple analytic expression which can generate arbitrary repulsive interaction potentials from the micromagnetic Hamiltonian. We also discuss a toy model of the radial profile of a skyrmion which is accurate for a wide range of material parameters.
Skyrmions are emerging topological spin structures that are potentially revolutionary for future data storage and spintronics applications. The existence and stability of skyrmions in magnetic materials is usually associated to the presence of the Dz
The understanding of the dynamical properties of skyrmion is a fundamental aspect for the realization of a competitive skyrmion based technology beyond CMOS. Most of the theoretical approaches are based on the approximation of a rigid skyrmion. Howev
We study two-body interactions of magnetic skyrmions on the plane and apply them to a (mostly) analytic description of a skyrmion lattice. This is done in the context of the solvable line, a particular choice of a potential for magnetic anisotropy an
Magnetic skyrmions are of considerable interest for low-power memory and logic devices because of high speed at low current and high stability due to topological protection. We propose a skyrmion field-effect transistor based on a gate-controlled Dzy
We study the spin waves of the triangular skyrmion crystal that emerges in a two dimensional spin lattice model as a result of the competition between Heisenberg exchange, Dzyalonshinkii-Moriya interactions, Zeeman coupling and uniaxial anisotropy. T