ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast is better than free: Revisiting adversarial training

98   0   0.0 ( 0 )
 نشر من قبل Eric Wong
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Adversarial training, a method for learning robust deep networks, is typically assumed to be more expensive than traditional training due to the necessity of constructing adversarial examples via a first-order method like projected gradient decent (PGD). In this paper, we make the surprising discovery that it is possible to train empirically robust models using a much weaker and cheaper adversary, an approach that was previously believed to be ineffective, rendering the method no more costly than standard training in practice. Specifically, we show that adversarial training with the fast gradient sign method (FGSM), when combined with random initialization, is as effective as PGD-based training but has significantly lower cost. Furthermore we show that FGSM adversarial training can be further accelerated by using standard techniques for efficient training of deep networks, allowing us to learn a robust CIFAR10 classifier with 45% robust accuracy to PGD attacks with $epsilon=8/255$ in 6 minutes, and a robust ImageNet classifier with 43% robust accuracy at $epsilon=2/255$ in 12 hours, in comparison to past work based on free adversarial training which took 10 and 50 hours to reach the same respective thresholds. Finally, we identify a failure mode referred to as catastrophic overfitting which may have caused previous attempts to use FGSM adversarial training to fail. All code for reproducing the experiments in this paper as well as pretrained model weights are at https://github.com/locuslab/fast_adversarial.



قيم البحث

اقرأ أيضاً

We study local SGD (also known as parallel SGD and federated averaging), a natural and frequently used stochastic distributed optimization method. Its theoretical foundations are currently lacking and we highlight how all existing error guarantees in the convex setting are dominated by a simple baseline, minibatch SGD. (1) For quadratic objectives we prove that local SGD strictly dominates minibatch SGD and that accelerated local SGD is minimax optimal for quadratics; (2) For general convex objectives we provide the first guarantee that at least sometimes improves over minibatch SGD; (3) We show that indeed local SGD does not dominate minibatch SGD by presenting a lower bound on the performance of local SGD that is worse than the minibatch SGD guarantee.
State-of-the-art generic low-precision training algorithms use a mix of 16-bit and 32-bit precision, creating the folklore that 16-bit hardware compute units alone are not enough to maximize model accuracy. As a result, deep learning accelerators are forced to support both 16-bit and 32-bit floating-point units (FPUs), which is more costly than only using 16-bit FPUs for hardware design. We ask: can we train deep learning models only with 16-bit floating-point units, while still matching the model accuracy attained by 32-bit training? Towards this end, we study 16-bit-FPU training on the widely adopted BFloat16 unit. While these units conventionally use nearest rounding to cast output to 16-bit precision, we show that nearest rounding for model weight updates often cancels small updates, which degrades the convergence and model accuracy. Motivated by this, we study two simple techniques well-established in numerical analysis, stochastic rounding and Kahan summation, to remedy the model accuracy degradation in 16-bit-FPU training. We demonstrate that these two techniques can enable up to 7% absolute validation accuracy gain in 16-bit-FPU training. This leads to 0.1% lower to 0.2% higher validation accuracy compared to 32-bit training across seven deep learning applications.
Adversarial training, in which a network is trained on adversarial examples, is one of the few defenses against adversarial attacks that withstands strong attacks. Unfortunately, the high cost of generating strong adversarial examples makes standard adversarial training impractical on large-scale problems like ImageNet. We present an algorithm that eliminates the overhead cost of generating adversarial examples by recycling the gradient information computed when updating model parameters. Our free adversarial training algorithm achieves comparable robustness to PGD adversarial training on the CIFAR-10 and CIFAR-100 datasets at negligible additional cost compared to natural training, and can be 7 to 30 times faster than other strong adversarial training methods. Using a single workstation with 4 P100 GPUs and 2 days of runtime, we can train a robust model for the large-scale ImageNet classification task that maintains 40% accuracy against PGD attacks. The code is available at https://github.com/ashafahi/free_adv_train.
Transfer learning aims to leverage models pre-trained on source data to efficiently adapt to target setting, where only limited data are available for model fine-tuning. Recent works empirically demonstrate that adversarial training in the source dat a can improve the ability of models to transfer to new domains. However, why this happens is not known. In this paper, we provide a theoretical model to rigorously analyze how adversarial training helps transfer learning. We show that adversarial training in the source data generates provably better representations, so fine-tuning on top of this representation leads to a more accurate predictor of the target data. We further demonstrate both theoretically and empirically that semi-supervised learning in the source data can also improve transfer learning by similarly improving the representation. Moreover, performing adversarial training on top of semi-supervised learning can further improve transferability, suggesting that the two approaches have complementary benefits on representations. We support our theories with experiments on popular data sets and deep learning architectures.
The goal of few-shot learning is to learn a classifier that can recognize unseen classes from limited support data with labels. A common practice for this task is to train a model on the base set first and then transfer to novel classes through fine- tuning (Here fine-tuning procedure is defined as transferring knowledge from base to novel data, i.e. learning to transfer in few-shot scenario.) or meta-learning. However, as the base classes have no overlap to the novel set, simply transferring whole knowledge from base data is not an optimal solution since some knowledge in the base model may be biased or even harmful to the novel class. In this paper, we propose to transfer partial knowledge by freezing or fine-tuning particular layer(s) in the base model. Specifically, layers will be imposed different learning rates if they are chosen to be fine-tuned, to control the extent of preserved transferability. To determine which layers to be recast and what values of learning rates for them, we introduce an evolutionary search based method that is efficient to simultaneously locate the target layers and determine their individual learning rates. We conduct extensive experiments on CUB and mini-ImageNet to demonstrate the effectiveness of our proposed method. It achieves the state-of-the-art performance on both meta-learning and non-meta based frameworks. Furthermore, we extend our method to the conventional pre-training + fine-tuning paradigm and obtain consistent improvement.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا