ﻻ يوجد ملخص باللغة العربية
Transfer learning aims to leverage models pre-trained on source data to efficiently adapt to target setting, where only limited data are available for model fine-tuning. Recent works empirically demonstrate that adversarial training in the source data can improve the ability of models to transfer to new domains. However, why this happens is not known. In this paper, we provide a theoretical model to rigorously analyze how adversarial training helps transfer learning. We show that adversarial training in the source data generates provably better representations, so fine-tuning on top of this representation leads to a more accurate predictor of the target data. We further demonstrate both theoretically and empirically that semi-supervised learning in the source data can also improve transfer learning by similarly improving the representation. Moreover, performing adversarial training on top of semi-supervised learning can further improve transferability, suggesting that the two approaches have complementary benefits on representations. We support our theories with experiments on popular data sets and deep learning architectures.
Adversarial training, a method for learning robust deep networks, is typically assumed to be more expensive than traditional training due to the necessity of constructing adversarial examples via a first-order method like projected gradient decent (P
We introduce a sampling perspective to tackle the challenging task of training robust Reinforcement Learning (RL) agents. Leveraging the powerful Stochastic Gradient Langevin Dynamics, we present a novel, scalable two-player RL algorithm, which is a
Adoption of machine learning (ML)-enabled cyber-physical systems (CPS) are becoming prevalent in various sectors of modern society such as transportation, industrial, and power grids. Recent studies in deep reinforcement learning (DRL) have demonstra
Relation extraction aims to extract relational facts from sentences. Previous models mainly rely on manually labeled datasets, seed instances or human-crafted patterns, and distant supervision. However, the human annotation is expensive, while human-
Deep neural networks (DNNs) have set benchmarks on a wide array of supervised learning tasks. Trained DNNs, however, often lack robustness to minor adversarial perturbations to the input, which undermines their true practicality. Recent works have in