ﻻ يوجد ملخص باللغة العربية
In some cases the state of a quantum system with a large number of subsystems can be approximated efficiently by the density matrix renormalization group, which makes use of redundancies in the description of the state. Here we show that the achievable efficiency can be much better when performing density matrix renormalization group calculations in the Heisenberg picture, as only the observable of interest but not the entire state is considered. In some non-trivial cases, this approach can even be exact for finite bond dimensions.
We have proposed a density-matrix renormalization group (DMRG) scheme to optimize the one-electron basis states of molecules. It improves significantly the accuracy and efficiency of the DMRG in the study of quantum chemistry or other many-fermion sy
We introduce the transcorrelated Density Matrix Renormalization Group (tcDMRG) theory for the efficient approximation of the energy for strongly correlated systems. tcDMRG encodes the wave function as a product of a fixed Jastrow or Gutzwiller correl
Driving a quantum system periodically in time can profoundly alter its long-time correlations and give rise to exotic quantum states of matter. The complexity of the combination of many-body correlations and dynamic manipulations has the potential to
The similarities between Hartree-Fock (HF) theory and the density-matrix renormalization group (DMRG) are explored. Both methods can be formulated as the variational optimization of a wave-function ansatz. Linearization of the time-dependent variatio
We adapt the block-Lanczos density-matrix renormalization-group technique to study the spin transport in a spin chain coupled to two non-interacting fermionic leads. As an example, we consider leads described by two-dimensional tight-binding models o