ترغب بنشر مسار تعليمي؟ اضغط هنا

Asymptotically compatible reproducing kernel collocation and meshfree integration for the peridynamic Navier equation

184   0   0.0 ( 0 )
 نشر من قبل Yu Leng
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we study the reproducing kernel (RK) collocation method for the peridynamic Navier equation. We first apply a linear RK approximation on both displacements and dilatation, then back-substitute dilatation, and solve the peridynamic Navier equation in a pure displacement form. The RK collocation scheme converges to the nonlocal limit and also to the local limit as nonlocal interactions vanish. The stability is shown by comparing the collocation scheme with the standard Galerkin scheme using Fourier analysis. We then apply the RK collocation to the quasi-discrete peridynamic Navier equation and show its convergence to the correct local limit when the ratio between the nonlocal length scale and the discretization parameter is fixed. The analysis is carried out on a special family of rectilinear Cartesian grids for the RK collocation method with a designated kernel with finite support. We assume the Lam{e} parameters satisfy $lambda geq mu$ to avoid adding extra constraints on the nonlocal kernel. Finally, numerical experiments are conducted to validate the theoretical results.

قيم البحث

اقرأ أيضاً

Reproducing kernel (RK) approximations are meshfree methods that construct shape functions from sets of scattered data. We present an asymptotically compatible (AC) RK collocation method for nonlocal diffusion models with Dirichlet boundary condition . The scheme is shown to be convergent to both nonlocal diffusion and its corresponding local limit as nonlocal interaction vanishes. The analysis is carried out on a special family of rectilinear Cartesian grids for linear RK method with designed kernel support. The key idea for the stability of the RK collocation scheme is to compare the collocation scheme with the standard Galerkin scheme which is stable. In addition, there is a large computational cost for assembling the stiffness matrix of the nonlocal problem because high order Gaussian quadrature is usually needed to evaluate the integral. We thus provide a remedy to the problem by introducing a quasi-discrete nonlocal diffusion operator for which no numerical quadrature is further needed after applying the RK collocation scheme. The quasi-discrete nonlocal diffusion operator combined with RK collocation is shown to be convergent to the correct local diffusion problem by taking the limits of nonlocal interaction and spatial resolution simultaneously. The theoretical results are then validated with numerical experiments. We additionally illustrate a connection between the proposed technique and an existing optimization based approach based on generalized moving least squares (GMLS).
In this paper we present an asymptotically compatible meshfree method for solving nonlocal equations with random coefficients, describing diffusion in heterogeneous media. In particular, the random diffusivity coefficient is described by a finite-dim ensional random variable or a truncated combination of random variables with the Karhunen-Lo`{e}ve decomposition, then a probabilistic collocation method (PCM) with sparse grids is employed to sample the stochastic process. On each sample, the deterministic nonlocal diffusion problem is discretized with an optimization-based meshfree quadrature rule. We present rigorous analysis for the proposed scheme and demonstrate convergence for a number of benchmark problems, showing that it sustains the asymptotic compatibility spatially and achieves an algebraic or sub-exponential convergence rate in the random coefficients space as the number of collocation points grows. Finally, to validate the applicability of this approach we consider a randomly heterogeneous nonlocal problem with a given spatial correlation structure, demonstrating that the proposed PCM approach achieves substantial speed-up compared to conventional Monte Carlo simulations.
The Gaussian kernel plays a central role in machine learning, uncertainty quantification and scattered data approximation, but has received relatively little attention from a numerical analysis standpoint. The basic problem of finding an algorithm fo r efficient numerical integration of functions reproduced by Gaussian kernels has not been fully solved. In this article we construct two classes of algorithms that use $N$ evaluations to integrate $d$-variate functions reproduced by Gaussian kernels and prove the exponential or super-algebraic decay of their worst-case errors. In contrast to earlier work, no constraints are placed on the length-scale parameter of the Gaussian kernel. The first class of algorithms is obtained via an appropriate scaling of the classical Gauss-Hermite rules. For these algorithms we derive lower and upper bounds on the worst-case error of the forms $exp(-c_1 N^{1/d}) N^{1/(4d)}$ and $exp(-c_2 N^{1/d}) N^{-1/(4d)}$, respectively, for positive constants $c_1 > c_2$. The second class of algorithms we construct is more flexible and uses worst-case optimal weights for points that may be taken as a nested sequence. For these algorithms we derive upper bounds of the form $exp(-c_3 N^{1/(2d)})$ for a positive constant $c_3$.
The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make u se of higher-order corrections to improve the computation of integrals in the correspondence formulation. A unified approach is presented that incorporates the reproducing kernel (RK) and generalized moving least square (GMLS) approximations in PD to obtain higher-order gradients. We show, however, that the improved quadrature rule does not suffice to handle correspondence-modeling instability issues. In Part I of this paper, a bond-associative, higher-order core formulation is developed that naturally provides stability. Numerical examples are provided to study the convergence of RK-PD, GMLS-PD, and their bond-associat
The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make u se of higher-order corrections to improve the computation of integrals in the correspondence formulation. A unified approach is presented that incorporates the reproducing kernel (RK) and generalized moving least square (GMLS) approximations in PD to obtain higher-order gradients. We show, however, that the improved quadrature rule does not suffice to handle correspondence-modeling instability issues. In Part I of this paper, a bond-associative, higher-order core formulation is developed that naturally provides stability. Numerical examples are provided to study the convergence of RK-PD, GMLS-PD, and their bond-associat
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا