ﻻ يوجد ملخص باللغة العربية
The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make use of higher-order corrections to improve the computation of integrals in the correspondence formulation. A unified approach is presented that incorporates the reproducing kernel (RK) and generalized moving least square (GMLS) approximations in PD to obtain higher-order gradients. We show, however, that the improved quadrature rule does not suffice to handle correspondence-modeling instability issues. In Part I of this paper, a bond-associative, higher-order core formulation is developed that naturally provides stability. Numerical examples are provided to study the convergence of RK-PD, GMLS-PD, and their bond-associat
The overarching goal of this work is to develop an accurate, robust, and stable methodology for finite deformation modeling using strong-form peridynamics (PD) and the correspondence modeling framework. We adopt recently developed methods that make u
In this work, we study the reproducing kernel (RK) collocation method for the peridynamic Navier equation. We first apply a linear RK approximation on both displacements and dilatation, then back-substitute dilatation, and solve the peridynamic Navie
As a nonlocal extension of continuum mechanics, peridynamics has been widely and effectively applied in different fields where discontinuities in the field variables arise from an initially continuous body. An important component of the constitutive
Stable and accurate modeling of thin shells requires proper enforcement of all types of boundary conditions. Unfortunately, for Kirchhoff-Love shells, strong enforcement of Dirichlet boundary conditions is difficult because both functional and deriva
We introduce a technique to automatically convert local boundary conditions into nonlocal volume constraints for nonlocal Poissons and peridynamic models. The proposed strategy is based on the approximation of nonlocal Dirichlet or Neumann data with