ترغب بنشر مسار تعليمي؟ اضغط هنا

Integration in reproducing kernel Hilbert spaces of Gaussian kernels

85   0   0.0 ( 0 )
 نشر من قبل Toni Karvonen
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The Gaussian kernel plays a central role in machine learning, uncertainty quantification and scattered data approximation, but has received relatively little attention from a numerical analysis standpoint. The basic problem of finding an algorithm for efficient numerical integration of functions reproduced by Gaussian kernels has not been fully solved. In this article we construct two classes of algorithms that use $N$ evaluations to integrate $d$-variate functions reproduced by Gaussian kernels and prove the exponential or super-algebraic decay of their worst-case errors. In contrast to earlier work, no constraints are placed on the length-scale parameter of the Gaussian kernel. The first class of algorithms is obtained via an appropriate scaling of the classical Gauss-Hermite rules. For these algorithms we derive lower and upper bounds on the worst-case error of the forms $exp(-c_1 N^{1/d}) N^{1/(4d)}$ and $exp(-c_2 N^{1/d}) N^{-1/(4d)}$, respectively, for positive constants $c_1 > c_2$. The second class of algorithms we construct is more flexible and uses worst-case optimal weights for points that may be taken as a nested sequence. For these algorithms we derive upper bounds of the form $exp(-c_3 N^{1/(2d)})$ for a positive constant $c_3$.



قيم البحث

اقرأ أيضاً

We show that polynomials do not belong to the reproducing kernel Hilbert space of infinitely differentiable translation-invariant kernels whose spectral measures have moments corresponding to a determinate moment problem. Our proof is based on relati ng this question to the problem of best linear estimation in continuous time one-parameter regression models with a stationary error process defined by the kernel. In particular, we show that the existence of a sequence of estimators with variances converging to $0$ implies that the regression function cannot be an element of the reproducing kernel Hilbert space. This question is then related to the determinacy of the Hamburger moment problem for the spectral measure corresponding to the kernel. In the literature it was observed that a non-vanishing constant function does not belong to the reproducing kernel Hilbert space associated with the Gaussian kernel (see Corollary 4.44 in Steinwart and Christmann, 2008). Our results provide a unifying view of this phenomenon and show that the mentioned result can be extended for arbitrary polynomials and a broad class of translation-invariant kernels.
Reproducing kernel (RK) approximations are meshfree methods that construct shape functions from sets of scattered data. We present an asymptotically compatible (AC) RK collocation method for nonlocal diffusion models with Dirichlet boundary condition . The scheme is shown to be convergent to both nonlocal diffusion and its corresponding local limit as nonlocal interaction vanishes. The analysis is carried out on a special family of rectilinear Cartesian grids for linear RK method with designed kernel support. The key idea for the stability of the RK collocation scheme is to compare the collocation scheme with the standard Galerkin scheme which is stable. In addition, there is a large computational cost for assembling the stiffness matrix of the nonlocal problem because high order Gaussian quadrature is usually needed to evaluate the integral. We thus provide a remedy to the problem by introducing a quasi-discrete nonlocal diffusion operator for which no numerical quadrature is further needed after applying the RK collocation scheme. The quasi-discrete nonlocal diffusion operator combined with RK collocation is shown to be convergent to the correct local diffusion problem by taking the limits of nonlocal interaction and spatial resolution simultaneously. The theoretical results are then validated with numerical experiments. We additionally illustrate a connection between the proposed technique and an existing optimization based approach based on generalized moving least squares (GMLS).
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u nder the translations associated with the elements of $G$. Under some additional technical assumptions, we study the W*-algebra $mathcal{V}$ of translation-invariant bounded linear operators acting on $H$. First, we decompose $mathcal{V}$ into the direct integral of the W*-algebras of bounded operators acting on the reproducing kernel Hilbert spaces $widehat{H}_xi$, $xiinwidehat{G}$, generated by the Fourier transform of the reproducing kernel. Second, we give a constructive criterion for the commutativity of $mathcal{V}$. Third, in the commutative case, we construct a unitary operator that simultaneously diagonalizes all operators belonging to $mathcal{V}$, i.e., converts them into some multiplication operators. Our scheme generalizes many examples previously studied by Nikolai Vasilevski and other authors.
In this work, we study the reproducing kernel (RK) collocation method for the peridynamic Navier equation. We first apply a linear RK approximation on both displacements and dilatation, then back-substitute dilatation, and solve the peridynamic Navie r equation in a pure displacement form. The RK collocation scheme converges to the nonlocal limit and also to the local limit as nonlocal interactions vanish. The stability is shown by comparing the collocation scheme with the standard Galerkin scheme using Fourier analysis. We then apply the RK collocation to the quasi-discrete peridynamic Navier equation and show its convergence to the correct local limit when the ratio between the nonlocal length scale and the discretization parameter is fixed. The analysis is carried out on a special family of rectilinear Cartesian grids for the RK collocation method with a designated kernel with finite support. We assume the Lam{e} parameters satisfy $lambda geq mu$ to avoid adding extra constraints on the nonlocal kernel. Finally, numerical experiments are conducted to validate the theoretical results.
178 - Sneh Lata , Vern I. Paulsen 2010
We prove two new equivalences of the Feichtinger conjecture that involve reproducing kernel Hilbert spaces. We prove that if for every Hilbert space, contractively contained in the Hardy space, each Bessel sequence of normalized kernel functions can be partitioned into finitely many Riesz basic sequences, then a general bounded Bessel sequence in an arbitrary Hilbert space can be partitioned into finitely many Riesz basic sequences. In addition, we examine some of these spaces and prove that for these spaces bounded Bessel sequences of normalized kernel functions are finite unions of Riesz basic sequences.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا