ﻻ يوجد ملخص باللغة العربية
The Gaussian kernel plays a central role in machine learning, uncertainty quantification and scattered data approximation, but has received relatively little attention from a numerical analysis standpoint. The basic problem of finding an algorithm for efficient numerical integration of functions reproduced by Gaussian kernels has not been fully solved. In this article we construct two classes of algorithms that use $N$ evaluations to integrate $d$-variate functions reproduced by Gaussian kernels and prove the exponential or super-algebraic decay of their worst-case errors. In contrast to earlier work, no constraints are placed on the length-scale parameter of the Gaussian kernel. The first class of algorithms is obtained via an appropriate scaling of the classical Gauss-Hermite rules. For these algorithms we derive lower and upper bounds on the worst-case error of the forms $exp(-c_1 N^{1/d}) N^{1/(4d)}$ and $exp(-c_2 N^{1/d}) N^{-1/(4d)}$, respectively, for positive constants $c_1 > c_2$. The second class of algorithms we construct is more flexible and uses worst-case optimal weights for points that may be taken as a nested sequence. For these algorithms we derive upper bounds of the form $exp(-c_3 N^{1/(2d)})$ for a positive constant $c_3$.
We show that polynomials do not belong to the reproducing kernel Hilbert space of infinitely differentiable translation-invariant kernels whose spectral measures have moments corresponding to a determinate moment problem. Our proof is based on relati
Reproducing kernel (RK) approximations are meshfree methods that construct shape functions from sets of scattered data. We present an asymptotically compatible (AC) RK collocation method for nonlocal diffusion models with Dirichlet boundary condition
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant u
In this work, we study the reproducing kernel (RK) collocation method for the peridynamic Navier equation. We first apply a linear RK approximation on both displacements and dilatation, then back-substitute dilatation, and solve the peridynamic Navie
We prove two new equivalences of the Feichtinger conjecture that involve reproducing kernel Hilbert spaces. We prove that if for every Hilbert space, contractively contained in the Hardy space, each Bessel sequence of normalized kernel functions can