ﻻ يوجد ملخص باللغة العربية
Quantum computing potentially offers exponential speed-ups over classical computing for certain tasks. A central, outstanding challenge to making quantum computing practical is to achieve fault tolerance, meaning that computations of any length or size can be realised in the presence of noise. The Gottesman-Kitaev-Preskill code is a promising approach towards fault-tolerant quantum computing, encoding logical qubits into grid states of harmonic oscillators. However, for the code to be fault tolerant, the quality of the grid states has to be extremely high. Approximate grid states have recently been realized experimentally, but their quality is still insufficient for fault tolerance. Current implementable protocols for generating grid states rely on measurements of ancillary qubits combined with either postselection or feed forward. Implementing such measurements take up significant time during which the states decohere, thus limiting their quality. Here we propose a measurement-free preparation protocol which deterministically prepares arbitrary logical grid states with a rectangular or hexagonal lattice. The protocol can be readily implemented in trapped-ion or superconducting-circuit platforms to generate high-quality grid states using only a few interactions, even with the noise levels found in current systems.
We present a protocol to prepare decoherence free cluster states using ultracold atoms loaded in a two dimensional superlattice. The superlattice geometry leads to an array of 2*2 plaquettes, each of them holding four spin-1/2 particles that can be u
Gottesman-Kitaev-Preskill (GKP) states appear to be amongst the leading candidates for correcting errors when encoding qubits into oscillators. However the preparation of GKP states remains a significant theoretical and experimental challenge. Until
Quantum information theory has revolutionized the way in which information is processed using quantum resources such as entangled states, local operations and classical communications. Two important protocols in quantum communications are quantum tel
While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a
We describe the preparation of atom-number states with strongly interacting bosons in one dimension, or spin-polarized fermions. The procedure is based on a combination of weakening and squeezing of the trapping potential. For the resulting state, th