ﻻ يوجد ملخص باللغة العربية
While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a lattice in real space. In particular, the present algorithm is able to prepare general pure and mixed many-particle states of any number of particles. It relies on a procedure for converting from a second-quantized state to its first-quantized counterpart. The algorithm is efficient in that it operates in time that is polynomial in all the essential descriptors of the system, such the number of particles, the resolution of the lattice, and the inverse of the maximum final error. This scaling holds under the assumption that the wavefunction to be prepared is bounded or its indefinite integral known and that the Fock operator of the system is efficiently simulatable.
One of the key applications for the emerging quantum simulators is to emulate the ground state of many-body systems, as it is of great interest in various fields from condensed matter physics to material science. Traditionally, in an analog sense, ad
Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body sys
Quantum simulators are attractive as a means to study many-body quantum systems that are not amenable to classical numerical treatment. A versatile framework for quantum simulation is offered by superconducting circuits. In this perspective, we discu
We formulate a general theory of wave-particle duality for many-body quantum states, which quantifies how wave- and particle-like properties balance each other. Much as in the well-understood single-particle case, which-way information -- here on the
In this thesis we present new results relevant to two important problems in quantum information science: the development of a theory of entanglement and the exploration of the use of controlled quantum systems to the simulation of quantum many-body p