ترغب بنشر مسار تعليمي؟ اضغط هنا

Preparation of many-body states for quantum simulation

132   0   0.0 ( 0 )
 نشر من قبل Ivan Kassal
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

While quantum computers are capable of simulating many quantum systems efficiently, the simulation algorithms must begin with the preparation of an appropriate initial state. We present a method for generating physically relevant quantum states on a lattice in real space. In particular, the present algorithm is able to prepare general pure and mixed many-particle states of any number of particles. It relies on a procedure for converting from a second-quantized state to its first-quantized counterpart. The algorithm is efficient in that it operates in time that is polynomial in all the essential descriptors of the system, such the number of particles, the resolution of the lattice, and the inverse of the maximum final error. This scaling holds under the assumption that the wavefunction to be prepared is bounded or its indefinite integral known and that the Fock operator of the system is efficiently simulatable.



قيم البحث

اقرأ أيضاً

One of the key applications for the emerging quantum simulators is to emulate the ground state of many-body systems, as it is of great interest in various fields from condensed matter physics to material science. Traditionally, in an analog sense, ad iabatic evolution has been proposed to slowly evolve a simple Hamiltonian, initialized in its ground state, to the Hamiltonian of interest such that the final state becomes the desired ground state. Recently, variational methods have also been proposed and realized in quantum simulators for emulating the ground state of many-body systems. Here, we first provide a quantitative comparison between the adiabatic and variational methods with respect to required quantum resources on digital quantum simulators, namely the depth of the circuit and the number of two-qubit quantum gates. Our results show that the variational methods are less demanding with respect to these resources. However, they need to be hybridized with a classical optimization which can converge slowly. Therefore, as the second result of the paper, we provide two different approaches for speeding the convergence of the classical optimizer by taking a good initial guess for the parameters of the variational circuit. We show that these approaches are applicable to a wide range of Hamiltonian and provide significant improvement in the optimization procedure.
Coupling a quantum many-body system to an external environment dramatically changes its dynamics and offers novel possibilities not found in closed systems. Of special interest are the properties of the steady state of such open quantum many-body sys tems, as well as the relaxation dynamics towards the steady state. However, new computational tools are required to simulate open quantum many-body systems, as methods developed for closed systems cannot be readily applied. We review several approaches to simulate open many-body systems and point out the advances made in recent years towards the simulation of large system sizes.
Quantum simulators are attractive as a means to study many-body quantum systems that are not amenable to classical numerical treatment. A versatile framework for quantum simulation is offered by superconducting circuits. In this perspective, we discu ss how superconducting circuits allow the engineering of a wide variety of interactions, which in turn allows the simulation of a wide variety of model Hamiltonians. In particular we focus on strong photon-photon interactions mediated by nonlinear elements. This includes on-site, nearest-neighbour and four-body interactions in lattice models, allowing the implementation of extended Bose-Hubbard models and the toric code. We discuss not only the present state in analogue quantum simulation, but also future perspectives of superconducting quantum simulation that open up when concatenating quantum gates in emerging quantum computing platforms.
We formulate a general theory of wave-particle duality for many-body quantum states, which quantifies how wave- and particle-like properties balance each other. Much as in the well-understood single-particle case, which-way information -- here on the level of many-particle paths -- lends particle-character, while interference -- here due to coherent superpositions of many-particle amplitudes -- indicates wave-like properties. We analyze how many-particle which-way information, continuously tunable by the level of distinguishability of fermionic or bosonic, identical and possibly interacting particles, constrains interference contributions to many-particle observables and thus controls the quantum-to-classical transition in many-particle quantum systems. The versatility of our theoretical framework is illustrated for Hong-Ou-Mandel- and Bose-Hubbard-like exemplary settings.
In this thesis we present new results relevant to two important problems in quantum information science: the development of a theory of entanglement and the exploration of the use of controlled quantum systems to the simulation of quantum many-body p henomena. In the first part we introduce a new approach to the study of entanglement by considering its manipulation under operations not capable of generating entanglement and show there is a total order for multipartite quantum states in this framework. We also present new results on hypothesis testing of correlated sources and give further evidence on the existence of NPPT bound entanglement. In the second part, we study the potential as well as the limitations of a quantum computer for calculating properties of many-body systems. First we analyse the usefulness of quantum computation to calculate additive approximations to partition functions and spectral densities of local Hamiltonians. We then show that the determination of ground state energies of local Hamiltonians with an inverse polynomial spectral gap is QCMA-hard. In the third and last part, we approach the problem of quantum simulating many-body systems from a more pragmatic point of view. We analyze the realization of paradigmatic condensed matter Hamiltonians in arrays of coupled microcavities, such as the Bose-Hubbard and the anisotropic Heisenberg models, and discuss the feasibility of an experimental realization with state-of-the-art current technology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا