ﻻ يوجد ملخص باللغة العربية
We describe the preparation of atom-number states with strongly interacting bosons in one dimension, or spin-polarized fermions. The procedure is based on a combination of weakening and squeezing of the trapping potential. For the resulting state, the full atom number distribution is obtained. Starting with an unknown number of particles $N_i$, we optimize the sudden change in the trapping potential which leads to the Fock state of $N_f$ particles in the final trap. Non-zero temperature effects as well as different smooth trapping potentials are analyzed. A simple criterion is provided to ensure the robust preparation of the Fock state for physically realistic traps.
We study the production of low atom number Fock states by reducing suddenly the potential trap in a 1D strongly interacting (Tonks-Girardeau) gas. The fidelity of the Fock state preparation is characterized by the average and variance of the number o
We use coherent excitation of 3-16 atom ensembles to demonstrate collective Rabi flopping mediated by Rydberg blockade. Using calibrated atom number measurements, we quantitatively confirm the expected $sqrt{N}$ Rabi frequency enhancement to within 4
If the boundary conditions of the quantum vacuum are changed in time, quantum field theory predicts that real, observable particles can be created in the initially empty modes. Here, we realize this effect by changing the boundary conditions of a spi
In this letter we present a strategy that combines the action of cavity damping mechanisms with that of an engineered atomic reservoir to drive an initial thermal distribution to a Fock equilibrium state. The same technique can be used to slice proba
We illustrate the existence of single-excitation bound states for propagating photons interacting with $N$ two-level atoms. These bound states can be calculated from an effective spin model, and their existence relies on dissipation in the system. Th