ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolutionary de Rham-Hodge method

90   0   0.0 ( 0 )
 نشر من قبل Jiahui Chen
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The de Rham-Hodge theory is a landmark of the 20$^text{th}$ Centurys mathematics and has had a great impact on mathematics, physics, computer science, and engineering. This work introduces an evolutionary de Rham-Hodge method to provide a unified paradigm for the multiscale geometric and topological analysis of evolving manifolds constructed from a filtration, which induces a family of evolutionary de Rham complexes. While the present method can be easily applied to close manifolds, the emphasis is given to more challenging compact manifolds with 2-manifold boundaries, which require appropriate analysis and treatment of boundary conditions on differential forms to maintain proper topological properties. Three sets of unique evolutionary Hodge Laplacian operators are proposed to generate three sets of topology-preserving singular spectra, for which the multiplicities of zero eigenvalues correspond to exactly the persistent Betti numbers of dimensions 0, 1, and 2. Additionally, three sets of non-zero eigenvalues further reveal both topological persistence and geometric progression during the manifold evolution. Extensive numerical experiments are carried out via the discrete exterior calculus to demonstrate the utility and usefulness of the proposed method for data representation and shape analysis.



قيم البحث

اقرأ أيضاً

These lecture notes in the De Rham-Hodge theory are designed for a 1-semester undergraduate course (in mathematics, physics, engineering, chemistry or biology). This landmark theory of the 20th Century mathematics gives a rigorous foundation to moder n field and gauge theories in physics, engineering and physiology. The only necessary background for comprehensive reading of these notes is Greens theorem from multivariable calculus.
142 - Vadim Schechtman 2015
We introduce a notion of the De Rham complex of a Gerstenhaber algebra which produces a notion of a quasi-BV structure, and allows to classify these structures, generalizing the classical results for polyvector fields.
This paper extends the nonabelian Hodge correspondence for Kaehler manifolds to a larger class of hermitian metrics on complex manifolds called balanced of Hodge-Riemann type. Essentially, it grows out of a few key observations so that the known resu lts, especially the Donaldson-Uhlenbeck-Yau theorem and Corlettes theorem, can be applied in our setting. Though not necessarily Kaehler, we show that the Sampson-Siu Theorem proving that harmonic maps are pluriharmonic remains valid for a slightly smaller class by using the known argument. Special important examples include those balanced metrics arising from multipolarizations.
We present a study on the integral forms and their Cech/de Rham cohomology. We analyze the problem from a general perspective of sheaf theory and we explore examples in superprojective manifolds. Integral forms are fundamental in the theory of integr ation in supermanifolds. One can define the integral forms introducing a new sheaf containing, among other objects, the new basic forms delta(dtheta) where the symbol delta has the usual formal properties of Diracs delta distribution and acts on functions and forms as a Dirac measure. They satisfy in addition some new relations on the sheaf. It turns out that the enlarged sheaf of integral and ordinary superforms contains also forms of negative degree and, moreover, due to the additional relations introduced, its cohomology is, in a non trivial way, different from the usual superform cohomology.
91 - Benjamin Antieau 2018
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of t he derived de Rham cohomology of $X$. Such filtrations have previously been constructed by Loday in characteristic zero and by Bhatt-Morrow-Scholze for $p$-complete negative cyclic and periodic cyclic homology in the quasisyntomic case.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا