ﻻ يوجد ملخص باللغة العربية
The de Rham-Hodge theory is a landmark of the 20$^text{th}$ Centurys mathematics and has had a great impact on mathematics, physics, computer science, and engineering. This work introduces an evolutionary de Rham-Hodge method to provide a unified paradigm for the multiscale geometric and topological analysis of evolving manifolds constructed from a filtration, which induces a family of evolutionary de Rham complexes. While the present method can be easily applied to close manifolds, the emphasis is given to more challenging compact manifolds with 2-manifold boundaries, which require appropriate analysis and treatment of boundary conditions on differential forms to maintain proper topological properties. Three sets of unique evolutionary Hodge Laplacian operators are proposed to generate three sets of topology-preserving singular spectra, for which the multiplicities of zero eigenvalues correspond to exactly the persistent Betti numbers of dimensions 0, 1, and 2. Additionally, three sets of non-zero eigenvalues further reveal both topological persistence and geometric progression during the manifold evolution. Extensive numerical experiments are carried out via the discrete exterior calculus to demonstrate the utility and usefulness of the proposed method for data representation and shape analysis.
These lecture notes in the De Rham-Hodge theory are designed for a 1-semester undergraduate course (in mathematics, physics, engineering, chemistry or biology). This landmark theory of the 20th Century mathematics gives a rigorous foundation to moder
We introduce a notion of the De Rham complex of a Gerstenhaber algebra which produces a notion of a quasi-BV structure, and allows to classify these structures, generalizing the classical results for polyvector fields.
This paper extends the nonabelian Hodge correspondence for Kaehler manifolds to a larger class of hermitian metrics on complex manifolds called balanced of Hodge-Riemann type. Essentially, it grows out of a few key observations so that the known resu
We present a study on the integral forms and their Cech/de Rham cohomology. We analyze the problem from a general perspective of sheaf theory and we explore examples in superprojective manifolds. Integral forms are fundamental in the theory of integr
We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of t