ترغب بنشر مسار تعليمي؟ اضغط هنا

Periodic cyclic homology and derived de Rham cohomology

92   0   0.0 ( 0 )
 نشر من قبل Benjamin Antieau
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Benjamin Antieau




اسأل ChatGPT حول البحث

We use the Beilinson $t$-structure on filtered complexes and the Hochschild-Kostant-Rosenberg theorem to construct filtrations on the negative cyclic and periodic cyclic homologies of a scheme $X$ with graded pieces given by the Hodge-completion of the derived de Rham cohomology of $X$. Such filtrations have previously been constructed by Loday in characteristic zero and by Bhatt-Morrow-Scholze for $p$-complete negative cyclic and periodic cyclic homology in the quasisyntomic case.



قيم البحث

اقرأ أيضاً

189 - Sheel Ganatra 2019
We construct geometric maps from the cyclic homology groups of the (compact or wrapped) Fukaya category to the corresponding $S^1$-equivariant (Floer/quantum or symplectic) cohomology groups, which are natural with respect to all Gysin and periodicit y exact sequences and are isomorphisms whenever the (non-equivariant) open-closed map is. These {em cyclic open-closed maps} give (a) constructions of geometric smooth and/or proper Calabi-Yau structures on Fukaya categories (which in the proper case implies the Fukaya category has a cyclic A-infinity model in characteristic 0) and (b) a purely symplectic proof of the non-commutative Hodge-de Rham degeneration conjecture for smooth and proper subcategories of Fukaya categories of compact symplectic manifolds. Further applications of cyclic open-closed maps, to counting curves in mirror symmetry and to comparing topological field theories, are the subject of joint projects with Perutz-Sheridan [GPS1, GPS2] and Cohen [CG].
The title refers to the nilcommutative or $NC$-schemes introduced by M. Kapranov in math.AG/9802041. The latter are noncommutative nilpotent thickenings of commutative schemes. We consider also the parallel theory of nil-Poisson or $NP$-schemes, whic h are nilpotent thickenings of commutative schemes in the category of Poisson schemes. We study several variants of de Rham cohomology for $NC$- and $NP$-schemes. The variants include nilcommutative and nil-Poiss
This paper contains three new results. {bf 1}.We introduce new notions of projective crystalline representations and twisted periodic Higgs-de Rham flows. These new notions generalize crystalline representations of etale fundamental groups introduced in [7,10] and periodic Higgs-de Rham flows introduced in [19]. We establish an equivalence between the categories of projective crystalline representations and twisted periodic Higgs-de Rham flows via the category of twisted Fontaine-Faltings module which is also introduced in this paper. {bf 2.}We study the base change of these objects over very ramified valuation rings and show that a stable periodic Higgs bundle gives rise to a geometrically absolutely irreducible crystalline representation. {bf 3.} We investigate the dynamic of self-maps induced by the Higgs-de Rham flow on the moduli spaces of rank-2 stable Higgs bundles of degree 1 on $mathbb{P}^1$ with logarithmic structure on marked points $D:={x_1,,...,x_n}$ for $ngeq 4$ and construct infinitely many geometrically absolutely irreducible $mathrm{PGL_2}(mathbb Z_p^{mathrm{ur}})$-crystalline representations of $pi_1^text{et}(mathbb{P}^1_{{mathbb{Q}}_p^text{ur}}setminus D)$. We find an explicit formula of the self-map for the case ${0,,1,,infty,,lambda}$ and conjecture that a Higgs bundle is periodic if and only if the zero of the Higgs field is the image of a torsion point in the associated elliptic curve $mathcal{C}_lambda$ defined by $ y^2=x(x-1)(x-lambda)$ with the order coprime to $p$.
We present a study on the integral forms and their Cech/de Rham cohomology. We analyze the problem from a general perspective of sheaf theory and we explore examples in superprojective manifolds. Integral forms are fundamental in the theory of integr ation in supermanifolds. One can define the integral forms introducing a new sheaf containing, among other objects, the new basic forms delta(dtheta) where the symbol delta has the usual formal properties of Diracs delta distribution and acts on functions and forms as a Dirac measure. They satisfy in addition some new relations on the sheaf. It turns out that the enlarged sheaf of integral and ordinary superforms contains also forms of negative degree and, moreover, due to the additional relations introduced, its cohomology is, in a non trivial way, different from the usual superform cohomology.
We construct cup products of two different kinds for Hopf-cyclic cohomology. When the Hopf algebra reduces to the ground field our first cup product reduces to Connes cup product in ordinary cyclic cohomology. The second cup product generalizes Conne s-Moscovicis characteristic map for actions of Hopf algebras on algebras.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا