ﻻ يوجد ملخص باللغة العربية
This paper extends the nonabelian Hodge correspondence for Kaehler manifolds to a larger class of hermitian metrics on complex manifolds called balanced of Hodge-Riemann type. Essentially, it grows out of a few key observations so that the known results, especially the Donaldson-Uhlenbeck-Yau theorem and Corlettes theorem, can be applied in our setting. Though not necessarily Kaehler, we show that the Sampson-Siu Theorem proving that harmonic maps are pluriharmonic remains valid for a slightly smaller class by using the known argument. Special important examples include those balanced metrics arising from multipolarizations.
Arising from a topological twist of $mathcal{N} = 4$ super Yang-Mills theory are the Kapustin-Witten equations, a family of gauge-theoretic equations on a four-manifold parametrized by $tinmathbb{P}^1$. The parameter corresponds to a linear combinati
Let $G$ be a reductive group, and let $X$ be an algebraic curve over an algebraically closed field $k$ with positive characteristic. We prove a version of nonabelian Hodge correspondence for $G$-local systems over $X$ and $G$-Higgs bundles over the F
A p-divisible group, or more generally an F-crystal, is said to be Hodge-Newton reducible if its Hodge polygon passes through a break point of its Newton polygon. Katz proved that Hodge-Newton reducible F-crystals admit a canonical filtration called
The nonabelian Hodge correspondence (Corlette-Simpson correspondence), between the polystable Higgs bundles with vanishing Chern classes on a compact Kahler manifold $X$ and the completely reducible flat connections on $X$, is extended to the Fujiki class $mathcal C$ manifolds.
The de Rham-Hodge theory is a landmark of the 20$^text{th}$ Centurys mathematics and has had a great impact on mathematics, physics, computer science, and engineering. This work introduces an evolutionary de Rham-Hodge method to provide a unified par