ترغب بنشر مسار تعليمي؟ اضغط هنا

Warm dark energy

41   0   0.0 ( 0 )
 نشر من قبل Marco Peloso
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by some of the recent swampland conjectures, we study the implementation for the late time acceleration of the Universe of a mechanism developed by Anber and Sorbo in the context of primordial inflation, in which an axion field can slowly roll in a steep potential due to additional friction provided by its coupling to some U(1) gauge field. We first study the realization of this mechanism in N = 2 supergravity models resulting from string compactifications on Calabi--Yau manifolds. We then study the transition between matter domination and the axion domination, and show that indeed the backreaction of the produced gauge field can sufficiently slow the motion of the axion, so to produce the present accelerated era. We finally study the transition from a pre-inflationary matter or radiation domination to primordial inflation. In the regime that we could explore numerically, the evolution is characterized by stages of faster axion roll (and consequent bursts of gauge field amplification) intermitted by stages of slower roll, with a pattern that oscillates about the steady state Anber and Sorbo solution, but that does not appear to relax to it.


قيم البحث

اقرأ أيضاً

126 - Jacob M. Leedom 2019
We discuss the prospects of measuring deviations of the dark energy equation of state from w=-1 by using the swampland conjectures to relate inflationary models to quintessence scenarios. This note is based on work done by the author with H. Murayama and C. Chiang arXiv:1811.01987.
We discuss the relations between swampland conjectures and observational constraints on both inflation and dark energy. Using the requirement $| abla V|geq c V$, with $c$ as a universal constant whose value can be derived from inflation, there may be no observable distinction between constant and non-constant models of dark energy. However, the latest modification of the above conjecture, which utilizes the second derivative of the potential, opens up the opportunity for observations to determine if the dark energy equation of state deviates from that of a cosmological constant. We also comment on the observability of tensor fluctuations despite the conjecture that field excursions are smaller than the Planck scale.
We study the phenomenology of a recent string construction with a quantum mechanically stable dark energy. A mild supersymmetry protects the vacuum energy but also allows $O(10 - 100)$ TeV scale superpartner masses. The construction is holographic in the sense that the 4D spacetime is generated from pixels originating from five-branes wrapped over metastable five-cycles of the compactification. The cosmological constant scales as $Lambda sim 1/N$ in the pixel number. An instability in the construction leads to cosmic expansion. This also causes more five-branes to wind up in the geometry, leading to a slowly decreasing cosmological constant which we interpret as an epoch of inflation followed by (pre-)heating when a rare event occurs in which the number of pixels increases by an order one fraction. The sudden appearance of radiation triggers an exponential increase in the number of pixels. Dark energy has a time varying equation of state with $w_a=-3Omega_{m,0}(1+w_0)/2$, which is compatible with current bounds, and could be constrained further by future data releases. The pixelated nature of the Universe also implies a large-$l$ cutoff on the angular power spectrum of cosmological observables with $l_{rm max} sim O(N)$. We also use this pixel description to study the thermodynamics of de Sitter space, finding rough agreement with effective field theory considerations.
We study physics concerning the cosmological constant problem in the framework of effective field theory and suggest that a dominant part of dark energy can originate from gravitational corrections of vacuum energy, under the assumption that the clas sical gravitational fields do not couple to a large portion of the vacuum energy effectively, in spite of the coupling between graviton and matters at a microscopic level. Our speculation is excellent with terascale supersymmetry.
122 - Benjamin Shlaer 2017
We present a prototype model that resolves the cosmological constant problem using matter alone, i.e., without modifying gravity. Its generic cosmological solutions adjust an arbitrarily large, negative dark energy to a positive value parametrically suppressed by an initial field velocity. Inflationary initial conditions lead to a positive dark energy exponentially smaller in magnitude than any model parameter, or any scale in the initial conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا