ﻻ يوجد ملخص باللغة العربية
We discuss the relations between swampland conjectures and observational constraints on both inflation and dark energy. Using the requirement $| abla V|geq c V$, with $c$ as a universal constant whose value can be derived from inflation, there may be no observable distinction between constant and non-constant models of dark energy. However, the latest modification of the above conjecture, which utilizes the second derivative of the potential, opens up the opportunity for observations to determine if the dark energy equation of state deviates from that of a cosmological constant. We also comment on the observability of tensor fluctuations despite the conjecture that field excursions are smaller than the Planck scale.
We discuss the prospects of measuring deviations of the dark energy equation of state from w=-1 by using the swampland conjectures to relate inflationary models to quintessence scenarios. This note is based on work done by the author with H. Murayama and C. Chiang arXiv:1811.01987.
The Swampland de Sitter conjecture in combination with upper limits on the tensor-to-scalar ratio $r$ derived from observations of the cosmic microwave background endangers the paradigm of slow-roll single field inflation. This conjecture constrains
The Swampland Distance Conjecture (SDC) constraints the dynamics emerging at infinite distances in field space of any effective field theory consistent with quantum gravity. It provides a relation between the cut-off in energies and the field range w
Perhaps the greatest challenge for fundamental theories based on compactification from extra dimensions is accommodating a period of accelerated cosmological expansion. Previous studies have identified constraints imposed by the existence of dark ene
Among Swampland conditions, the distance conjecture characterizes the geometry of scalar fields and the de Sitter conjecture constrains allowed potentials on it. We point out a connection between the distance conjecture and a refined version of the d